1.已知$\overrightarrow i$和$\overrightarrow j$是互相垂直的單位向量,向量$\overrightarrow{a_n}$滿足:$\overrightarrow i•\overrightarrow{a_n}=n$,$\overrightarrow j•\overrightarrow{a_n}=2n+1$,n∈N*,設(shè)θn為$\overrightarrow i$和$\overrightarrow{a_n}$的夾角,則(  )
A.θn隨著n的增大而增大B.θn隨著n的增大而減小
C.隨著n的增大,θn先增大后減小D.隨著n的增大,θn先減小后增大

分析 分別以 $\overrightarrow i$和$\overrightarrow j$所在的直線為x軸,y軸建立坐標(biāo)系,則$\overrightarrow i$=(1,0),$\overrightarrow{j}$=(0,1),設(shè)$\overrightarrow{a_n}$=(xn,yn),進(jìn)而可求出tanθn,結(jié)合函數(shù)的單調(diào)性即可判斷.

解答 解:分別以 $\overrightarrow i$和$\overrightarrow j$所在的直線為x軸,y軸建立坐標(biāo)系,則$\overrightarrow i$=(1,0),$\overrightarrow{j}$=(0,1),
設(shè)$\overrightarrow{a_n}$=(xn,yn),
∵$\overrightarrow i•\overrightarrow{a_n}=n$,$\overrightarrow j•\overrightarrow{a_n}=2n+1$,n∈N*
∴xn=n,yn=2n+1,n∈N*
∴$\overrightarrow{a_n}$=(n,2n+1),n∈N*,
∵θn為$\overrightarrow i$和$\overrightarrow{a_n}$的夾角,
∴tanθn=$\frac{{y}_{n}}{{x}_{n}}$=$\frac{2n+1}{n}$=2+$\frac{1}{n}$
∴y=tanθn為減函數(shù),
∴θn隨著n的增大而減。
故選:B.

點(diǎn)評 本題主要考查了向量的數(shù)量積的坐標(biāo)表示,解題的關(guān)鍵是根據(jù)已知條件把所求問題坐標(biāo)化.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)數(shù)列{an}的首項(xiàng)a1=$\frac{3}{2}$,前n項(xiàng)和為Sn,且滿足2an+1+Sn=3(n∈N*),則滿足$\frac{18}{17}$<$\frac{{S}_{2n}}{{S}_{n}}$<$\frac{10}{9}$的n值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.甲、乙兩名運(yùn)動員在某項(xiàng)測試中的6次成績的莖葉圖如圖所示,${\overline{x}}_{1}$,${\overline{x}}_{2}$分別表示甲、乙兩名運(yùn)動員這項(xiàng)測試成績的平均數(shù),s${\;}_{1}^{2}$,s${\;}_{2}^{2}$分別表示甲、乙兩名運(yùn)動員這項(xiàng)測試成績的方差,則有(  )
A.${\overline{x}}_{1}$>${\overline{x}}_{2}$,s${\;}_{1}^{2}$<${s}_{2}^{2}$B.${\overline{x}}_{1}$=${\overline{x}}_{2}$,s${\;}_{1}^{2}$>${s}_{2}^{2}$
C.${\overline{x}}_{1}$=${\overline{x}}_{2}$,s${\;}_{1}^{2}$=${s}_{2}^{2}$D.${\overline{x}}_{1}$=${\overline{x}}_{2}$,s${\;}_{1}^{2}$<${s}_{2}^{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知$f(x)={x^2}-1,g(x)=\left\{\begin{array}{l}x-1\;(x≥0)\\ 2-x\;(x<0)\end{array}\right.$
(1)求g[f(x)];
(2)設(shè)F(x)=max{f(x),g(x)},作函數(shù)F(x)的圖象,并由此求出F(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在公差不為0的等差數(shù)列{an}中,2a4-a92+2a14=0,數(shù)列{bn}是等比數(shù)列,且a9=b9,則b8b10=( 。
A.4B.16C.8D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在正方體ABCDD一A1B1C1D1中,點(diǎn)E為線段C1D1上一點(diǎn),且滿足$\frac{{D}_{1}E}{E{C}_{1}}$=$\sqrt{3}$+1,則直線AB1與直線CE所成的角的大小為( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,已知矩形ABCD和矩形ADEF所在平面互相垂直,點(diǎn)M,N分別在對角線BD、AE上,且BM=$\frac{1}{3}$BD,AN=$\frac{1}{3}$AE,求證:MN∥平面CDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=$\frac{{9}^{x}+{3}^{x+1}+a}{{3}^{x}}$.
(1)若f(x)是偶函數(shù),求實(shí)數(shù)a的值;
(2)若對任意x∈[0,+∞),都有f(x)>0,求實(shí)數(shù)a的取值范圍;
(3)若f(x)在區(qū)間[0,+∞)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)函數(shù)f(x)=|x-a|+|x|.
(Ⅰ)若a=1,解不等式f(x)>2;
(Ⅱ)若存在x∈R,使得不等式f(x)$≤\frac{{t}^{2}+3}{t+1}$對任意t>-1恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案