9.已知a=$\frac{1}{π}\int_{-2}^2$($\sqrt{4-{x^2}}$-ex)dx,若(1-ax)2016=b0+b1x+b2x2+…+b2016x2016(x∈R),則$\frac{b_1}{2}$+$\frac{b_2}{2^2}$+…+$\frac{{{b_{2016}}}}{{{2^{2016}}}}$的值為( 。
A.0B.-1C.1D.e

分析 首先利用定積分的幾何意義求出a,然后利用二項式定理,將x賦值為$\frac{1}{2}$即可.

解答 解:a=$\frac{1}{π}\int_{-2}^2$($\sqrt{4-{x^2}}$-ex)dx=$\frac{1}{2}×\frac{1}{π}×π×{2}^{2}$=2,
(1-2x)2016=b0+b1x+b2x2+…+b2016x2016(x∈R),
令x=$\frac{1}{2}$,
則$\frac{b_1}{2}$+$\frac{b_2}{2^2}$+…+$\frac{{{b_{2016}}}}{{{2^{2016}}}}$=(1-2x)2016-b0=0-1=-1;
故選:B.

點評 本題考查了利用定積分的幾何意義求定積分以及二項式定理的應用求展開式的系數(shù)問題;正確賦值是關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

19.已知正實數(shù)x,y滿足$\frac{1}{2x+y}$+$\frac{4}{2x+3y}$=1,則x+y的最小值為$\frac{9}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.函數(shù)f(x)=mx2-m(m-1)x+1在[0,+∞)上是增函數(shù),則實數(shù)m的取值范圍是( 。
A.m≤1B.0<m≤1C.0≤m≤1D.m≥1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.執(zhí)行如圖所示的程序框圖,則輸出i的值為(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.如圖,在Rt△ABC中,∠C=90°,BE平分∠ABC,交AC于點E,過點E作ED⊥BE交AB于點D.
(1)求證:AE2=AD•AB;
(2)已知AD=$\frac{2\sqrt{3}}{3}$,AE=2,求EC的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知函數(shù)f(x)(x∈R)滿足f(1+x)=f(1-x),若函數(shù)y=f(x)的圖象與函數(shù)y=(x-1)2-2|x-1|-3圖象的交點為(x1,y1),(x2,y2),…,(xm,ym),則兩圖象所有交點的橫坐標之和為( 。
A.0B.mC.2mD.4m

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.512015除以13,所得余數(shù)為12.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知函數(shù)f(x)=$\frac{sin2x-2si{n}^{2}x}{sinx}$.則f(x)的最大值為2$\sqrt{2}$;f(x)在(0,π)上的單調(diào)遞增區(qū)間為[$\frac{3π}{4}$,π).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.設a∈R,函數(shù)f(x)=x3-3ax2+a.
(1)若x=-1是函數(shù)f(x)的極值點,求實數(shù)a的值;
(2)是否存在實數(shù)a,使得x∈[1-a,1+a]時,恒有-1≤f′(x)≤1成立(f′(x)是函數(shù)f(x)的導函數(shù))?若存在,求出a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案