7.集合M={x|x=k•90°+45°,k∈Z},N={x|x=k•45°+90°,k∈Z},則有( 。
A.M=NB.N?MC.M?ND.M∩N=∅

分析 在集合N中,k=2n,或k=2n+1,n∈Z,能過說明M的元素都是集合N的元素,而集合N中存在元素不在集合M中,從而便得出M?N.

解答 解:對于集合N,k=2n,或k=2n+1,n∈Z;
k=2n+1時,x=n•90°+45°+90°=(n+1)•90°+45°,n+1∈Z;
又M的元素x=k•90°+45°,k∈Z;
∴M的元素都是N的元素;
而k=2n時,x=k•90°+90°;
∴N中存在元素x∉M;
∴M?N.
故選:C.

點評 考查整數(shù)可以分成奇數(shù)和偶數(shù),描述法表示集合,知道x=k•90°+45°,k∈Z,和x=(n+1)•90°+45°,n∈Z,表示的元素相同,真子集的概念及判斷過程.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知z1=2-i,z2=1+3i,則復(fù)數(shù)$\frac{i}{{z}_{1}}$+$\frac{{z}_{2}}{5}$的虛部為(  )
A.1B.-1C.iD.-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,在平面四邊形ABCD中,∠A=90°,∠B=135°,∠C=60°,AB=AD,M,N分別是邊AD,CD上的點,且2AM=MD,2CN=ND.將△ABD沿對角線BD折起,使平面ABD⊥平面BCD,并連結(jié)AC,MN.(如圖2)

(Ⅰ) 證明:MN∥平面ABC;
(Ⅱ) 證明:AD⊥BC;
(Ⅲ)求直線BM與平面ACD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)a=log32,b=ln2,c=5${\;}^{\frac{1}{2}}$,則a、b、c三個數(shù)的大小關(guān)系是(  )
A.a>b>cB.b>a>cC.c>a>bD.c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)x>0,則方程x+$\frac{1}{x}$=2sinx的根的情況是( 。
A.有實根B.無實根C.恰有一實根D.無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知兩個等差數(shù)列{an}和{bn}的前n項和分別為Sn和Tn,且$\frac{S_n}{T_n}$=$\frac{2n+5}{n+3}$,則$\frac{a_5}{b_5}$為( 。
A.$\frac{13}{7}$B.$\frac{15}{8}$C.$\frac{23}{12}$D.$\frac{25}{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.銳角三角形ABC中,$S=\frac{{c}^{2}-({a}^{2}-^{2})}{4k}$,c既不為最大邊也不為最小邊,則k的取值范圍是($\sqrt{2}$-1,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)等比數(shù)列{an}中,a1=3,q=-2,則a6=-96.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知向量$\overrightarrow{a}$=(3,4),$\overrightarrow$=(sinα,cosα),且$\overrightarrow{a}∥\overrightarrow$,則tanα=( 。
A.$\frac{3}{4}$B.-$\frac{3}{4}$C.$\frac{4}{3}$D.-$\frac{4}{3}$

查看答案和解析>>

同步練習(xí)冊答案