lga+lgb=
 
考點:對數(shù)的運算性質(zhì)
專題:函數(shù)的性質(zhì)及應用
分析:直接利用對數(shù)的運算性質(zhì)化簡即可.
解答: 解:∵lg(MN)=lgM+lgN,(M,N>0),
∴l(xiāng)ga+lgb=lg(ab).
故答案為:lg(ab).
點評:本題考查對數(shù)運算的基本性質(zhì),是基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

函數(shù)y=sin(πx+
3
)+cos(πx+
π
6
)的一個單調(diào)增區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若tanα=-4,則3sinαcosα=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知10x=2,10y=3,則103x-
4y
2
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)fM(x)的定義域為R,且定義如下:fM(x)=
1,x∈M
-1,x∉M
(其中M是非空實數(shù)集).若非空實數(shù)集A,B滿足A∩B=∅,則函數(shù)g(x)=fA∪B(x)+fA(x)•fB(x)的值域為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于函數(shù)f(x)對任意x都有f(x+3)=-f(x).則函數(shù)f(x)周期是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

log37取值范圍是( 。
A、(0,
1
2
B、(
1
2
,1)
C、(
4
3
3
2
D、(
7
4
,
9
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)y=
f(x)
x
在(m,+∞)上為增函數(shù)(m為常數(shù)),則稱f(x)為區(qū)間(m,+∞)上的“一階比增函數(shù)”,(m,+∞)為f(x)的一階比增區(qū)間.
(1)若f(x)=xlnx-2ax2是(0,+∞)上的“一階比增函數(shù)”,求實數(shù)a的取值范圍;
(2)若f(x)=λx3-xlnx-x2  (λ>0,λ為常數(shù)),且g(x)=
f(x)
x
有唯一的零點,求f(x)的“一階比增區(qū)間”;
(3)若f(x)是(0,+∞)上的“一階比增函數(shù)”,求證:?x1,x2∈(0,+∞),f(x1)+f(x2)<f(x1+x2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知cos(15°+α)=
3
5
,α為銳角,求:
tαn(435°-α)+sin(α-165°)
cos(195°+α)×sin(105°+α)

查看答案和解析>>

同步練習冊答案