分析 (1)證明EC⊥平面ABE,即可證明平面ABE⊥平面AEC;
(2)求出三棱錐A-BEC的體積與圓柱體OO1的體積,利用比為1:6π,求∠BCE的大小.
解答 (1)證明:∵BC是直徑,
∴EC⊥BE,
∵EC⊥AB,AB∩BE=B,
∴EC⊥平面ABE,
∵EC?平面AEC,
∴平面ABE⊥平面AEC;
(2)解設(shè)BC=2R,∠BCE=α
∵三棱錐A-BEC的體積與圓柱體OO1的體積之比為1:6π,
∴$\frac{1}{3}×\frac{1}{2}×BCsinα×BCcosα×AB$:(π×BC2×AB)=1:6π,
∴sin2α=$\frac{1}{2}$,
∴α=$\frac{π}{12}$.
點(diǎn)評(píng) 本題考查平面與平面垂直的證明,考查體積的計(jì)算,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (1,4) | B. | (3,4) | C. | (1,3) | D. | (1,2)∪(3,4) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com