【題目】某商場銷售某種商品的經(jīng)驗表明,該商品每日的銷售量(單位:千克)與銷售價格(單位:元/千克)滿足關(guān)系式,其中為常數(shù).已知銷售價格為5元/千克時,每日可售出該商品13千克.
(1)求的值;
(2)若該商品的成本為3元/千克,試確定銷售價格的值,使商場每日銷售該商品所獲得的利潤最大,并求出最大利潤.
【答案】(1)6(2)x=4,46
【解析】
(1)由f(5)=13代入函數(shù)的解析式,解關(guān)于a的方程,可得a值;
(2)商場每日銷售該商品所獲得的利潤=每日的銷售量×銷售該商品的單利潤,可得日銷售量的利潤函數(shù)為關(guān)于x的三次多項式函數(shù),再用求導數(shù)的方法討論函數(shù)的單調(diào)性,得出函數(shù)的極大值點,從而得出最大值對應(yīng)的x值.
解:(1)因為x=5時,y=13,所以10=13,故a=6,
(2)由(Ⅰ)可知,該商品每日的銷售量y
所以商場每日銷售該商品所獲得的利潤為
從而,f′(x)=10[(x﹣6)2+2(x﹣3)(x﹣6)]=30(x﹣6)(x﹣4)
于是,當x變化時,f(x)、f′(x)的變化情況如下表:
x | (3,4) | 4 | (4,6) |
f'(x) | + | 0 | ﹣ |
f(x) | 單調(diào)遞增 | 極大值46 | 單調(diào)遞減 |
由上表可得,x=4是函數(shù)f(x)在區(qū)間(3,6)內(nèi)的極大值點,也是最大值點.
所以,當x=4時,函數(shù)f(x)取得最大值,且最大值等于46
答:當銷售價格為4元/千克時,商場每日銷售該商品所獲得的利潤最大.
科目:高中數(shù)學 來源: 題型:
【題目】祖暅原理也就是“等積原理”,它是由我國南北朝杰出的數(shù)學家祖沖之的兒子祖暅首先提出來的,祖暅原理的內(nèi)容是:夾在兩個平行平面間的兩個幾何體,被平行于這兩個平行平面的平面所截,如果截得兩個截面的面積總相等,那么這兩個幾何體的體積相等.已知,兩個平行平面間有三個幾何體,分別是三棱錐、四棱錐、圓錐(高度都為),其中:三棱錐的底面是正三角形(邊長為),四棱錐的底面是有一個角為的菱形(邊長為),圓錐的體積為,現(xiàn)用平行于這兩個平行平面的平面去截三個幾何體,如果截得的三個截面的面積相等,那么,下列關(guān)系式正確的是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校初中部共120名教師,高中部共180名教師,其性別比例如圖所示,已知按分層抽樣方法得到的工會代表中,高中部女教師有6人,則工會代表中男教師的總?cè)藬?shù)為________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在直三棱柱中,,,其中為棱上的中點,為棱上且位于點上方的動點.
(1)證明:平面;
(2)若平面與平面所成的銳二面角的余弦值為,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),給出下列結(jié)論:
(1)若對任意,且,都有,則為R上的減函數(shù);
(2)若為R上的偶函數(shù),且在內(nèi)是減函數(shù), ,則解集為;
(3)若為R上的奇函數(shù),則也是R上的奇函數(shù);
(4)為常數(shù),若對任意的,都有則關(guān)于對稱.
其中所有正確的結(jié)論序號為_________
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com