【題目】已知函數(shù),則下述結論中錯誤的是(

A.有且僅有個零點,則有且僅有個極小值點

B.有且僅有個零點,則上單調(diào)遞增

C.有且僅有個零點,則的范圍是

D.圖像關于對稱,且在單調(diào),則的最大值為

【答案】B

【解析】

利用正弦函數(shù)的圖象和性質(zhì)對每一個選項逐一分析判斷得解.

因為,因為有且僅有個零點,所以,所以.所以選項C正確;

此時,有且僅有個極小值點,故選項A正確;

因為,

因為,所以當時,所以,此時函數(shù)不是單調(diào)函數(shù),所以選項B錯誤;

因為圖像關于對稱,所以.

如果函數(shù)在單調(diào)遞增,

,所以,

時,函數(shù)的增區(qū)間為,

所以此時不滿足題意,所以該情況不存在.

,單調(diào)遞減,

,且,,

,且,

由上面兩式可得,,故奇數(shù)的最大值為11

時,,

此時上不單調(diào),不滿足題意.

時,,,,

此時,上單調(diào)遞減,滿足題意;

的最大值為9故選項D正確.

故選:B

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中a為非零常數(shù).

討論的極值點個數(shù),并說明理由;

證明:在區(qū)間內(nèi)有且僅有1個零點;的極值點,的零點且,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】高三年級某班50名學生期中考試數(shù)學成績的頻率分布直方圖如圖所示,成績分組區(qū)間為:.其中a,bc成等差數(shù)列且.物理成績統(tǒng)計如表.(說明:數(shù)學滿分150分,物理滿分100分)

分組

頻數(shù)

6

9

20

10

5

1)根據(jù)頻率分布直方圖,請估計數(shù)學成績的平均分;

2)根據(jù)物理成績統(tǒng)計表,請估計物理成績的中位數(shù);

3)若數(shù)學成績不低于140分的為“優(yōu)”,物理成績不低于90分的為“優(yōu)”,已知本班中至少有一個“優(yōu)”同學總數(shù)為6人,從此6人中隨機抽取3人,記X為抽到兩個“優(yōu)”的學生人數(shù),求X的分布列和期望值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)求在點處的切線方程;

2)若方程有兩個實數(shù)根,,且,證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,以原點為極點,軸的正半軸為極軸,以相同的長度單位建立極坐標系,已知直線的極坐標方程為,曲線的極坐標方程為,

(l)設為參數(shù),若,求直線的參數(shù)方程;

2)已知直線與曲線交于,且,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中國古代儒家要求學生掌握六種基本才藝:禮、樂、射、御、書、數(shù),簡稱“六藝”,某高中學校為弘揚“六藝”的傳統(tǒng)文化,分別進行了主題為“禮、樂、射、御、書、數(shù)”六場傳統(tǒng)文化知識競賽,現(xiàn)有甲、乙、丙三位選手進入了前三名的最后角逐,規(guī)定:每場知識競賽前三名的得分都分別為;選手最后得分為各場得分之和,在六場比賽后,已知甲最后得分為分,乙和丙最后得分都是分,且乙在其中一場比賽中獲得第一名,下列說法正確的是( )

A. 乙有四場比賽獲得第三名

B. 每場比賽第一名得分

C. 甲可能有一場比賽獲得第二名

D. 丙可能有一場比賽獲得第一名

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】由中央電視臺綜合頻道和唯眾傳媒聯(lián)合制作的開講啦是中國首檔青年電視公開課,每期節(jié)目由一位知名人士講述自己的故事,分享他們對于生活和生命的感悟,給予中國青年現(xiàn)實的討論和心靈的滋養(yǎng),討論青年們的人生問題,同時也在討論青春中國的社會問題,受到青年觀眾的喜愛,為了了解觀眾對節(jié)目的喜愛程度,電視臺隨機調(diào)查了A、B兩個地區(qū)的100名觀眾,得到如表的列聯(lián)表,已知在被調(diào)查的100名觀眾中隨機抽取1名,該觀眾是B地區(qū)當中非常滿意的觀眾的概率為

非常滿意

滿意

合計

A

30

15

B

合計

完成上述表格并根據(jù)表格判斷是否有的把握認為觀眾的滿意程度與所在地區(qū)有關系;

若以抽樣調(diào)查的頻率為概率,從A地區(qū)隨機抽取3人,設抽到的觀眾非常滿意的人數(shù)為X,求X的分布列和期望.

附:參考公式:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)當時,都有成立,求的取值范圍;

(Ⅲ)試問過點可作多少條直線與曲線相切?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】公元263年左右,我國古代數(shù)學家劉徽用圓內(nèi)接正多邊形的面積去逼近圓的面積求圓周率,他從單位圓內(nèi)接正六邊形算起,令邊數(shù)一倍一倍地增加,即12,2448,,192,逐個算出正六邊形,正十二邊形,正二十四邊形,,正一百九十二邊形,的面積,這些數(shù)值逐步地逼近圓面積,劉徽算到了正一百九十二邊形,這時候的近似值是3.141024,劉徽稱這個方法為“割圓術”,并且把“割圓術”的特點概括為“割之彌細,所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”.劉徽這種想法的可貴之處在于用已知的、可求的來逼近未知的、要求的,用有限來逼近無窮,這種思想極其重要,對后世產(chǎn)生了巨大影響.按照上面“割圓術”,用正二十四邊形來估算圓周率,則的近似值是( )(精確到.(參考數(shù)據(jù)

A.3.14B.3.11C.3.10D.3.05

查看答案和解析>>

同步練習冊答案