【題目】已知函數(shù)f(x)=|x|﹣|2x﹣1|,記f(x)>﹣1的解集為M.
(1)求M;
(2)已知a∈M,比較a2﹣a+1與 的大。

【答案】
(1)解:f(x)=|x|﹣|2x﹣1|= ,由f(x)>﹣1,可得: ,

解得0<x<2,∴M=(0,2).


(2)解:由(1)知:0<a<2,∵a2﹣a+1﹣ = =g(a).

當0<a<1時,g(a)<0,∴a2﹣a+1< ;

當a=1時,g(a)=0,∴a2﹣a+1= ;

當1<a<2時,g(a)>0,∴a2﹣a+1> ;

綜上所述:當0<a<1時,∴a2﹣a+1< ;

當a=1時,a2﹣a+1=

當1<a<2時,a2﹣a+1>


【解析】(1)f(x)=|x|﹣|2x﹣1|= ,由f(x,由f(x)>﹣1,可得: ,解出即可得出.(2)由(1)知:0<a<2,可得:a2﹣a+1﹣ = =g(a).對a分類討論:當0<a<1時,當a=1時,當1<a<2時,即可得出.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=(x﹣1)2+a(lnx﹣x+1)(其中a∈R,且a為常數(shù)) (Ⅰ)當a=4時,求函數(shù)y=f(x)的單調(diào)區(qū)間;
(Ⅱ)若對于任意的x∈(1,+∞),都有f(x)>0成立,求a的取值范圍;
(Ⅲ)若方程f(x)+a+1=0在x∈(1,2)上有且只有一個實根,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=|x|,g(x)=﹣|x﹣4|+m.
(1)解關于x的不等式g[f(x)]+3﹣m>0;
(2)若函數(shù)f(x)的圖象恒在函數(shù)g(2x)圖象的上方,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若動點A,B分別在直線l1:x+y-7=0和l2:x+y-5=0上移動,則AB的中點M到原點的距離的最小值為( )
A.3
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直線AB經(jīng)過⊙O上的點C,并且OA=OB,CA=CB,⊙O交直線OB于E、D,連接EC、CD.

(1)求證:直線AB是⊙O的切線;
(2)若tan∠CED= ,⊙O的半徑為3,求OA的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l與過點M(- , ),N( ,- )的直線垂直,則直線l的傾斜角是( ).
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】根據(jù)要求,解答下列問題。
(1)求經(jīng)過點A(3,2),B(-2,0)的直線方程;
(2)求過點P(-1,3),并且在兩軸上的截距相等的直線方程;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線的傾斜角 的余弦值 ,則此直線的斜率是( ).
A.
B.-
C.
D.±

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,ABCD﹣A1B1C1D1是棱長為a的正方體,M、N分別是下底面的棱A1B1 , B1C1的中點,P是上底面的棱AD上的一點,AP= ,過P、M、N的平面交上底面于PQ,Q在CD上,則PQ=

查看答案和解析>>

同步練習冊答案