已知曲線y=
1
3
x3
上一點P(2,
8
3
)
,求:
(1)點P處切線的斜率;
(2)點P處的切線方程.
考點:利用導數(shù)研究曲線上某點切線方程
專題:計算題,導數(shù)的概念及應用
分析:求出函數(shù)的導數(shù),求出x=2處的切線斜率,由點斜式方程求出切線方程.
解答: 解:(1)y=
1
3
x3
的導數(shù)y′=x2,
則點P(2,
8
3
)
處的切線的斜率為y′|x=2=4;
(2)由點斜式方程得,在點P處的切線方程:y-
8
3
=4(x-2),
即12x-3y-16=0.
點評:本題考查導數(shù)的幾何意義:曲線在某點處的切線斜率,考查直線方程的求法,運算能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

內(nèi)接于半徑為R的球且體積最大的圓柱的高為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

空間中有五個點,其中有四個點在同一平面內(nèi),但沒有任何三點共線,這樣的五個點確定平面的個數(shù)最多可以是
 
個.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

不等式log3|x-
1
3
|<-1的解集是( 。
A、(0,
2
3
B、(
2
3
,+∞)
C、(0,
1
3
)∪(
1
3
,
2
3
D、(
1
3
,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lnx-
x-a
x
,其中a為常數(shù),且a>0.
(1)若曲線y=f(x)在點(1,f(1))處的切線與直線y=x+1垂直,求函數(shù)f(x)的單調遞減區(qū)間;
(2)若函數(shù)f(x)在區(qū)間[1,3]上的最小值為
1
3
,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)y=f(x),x∈[a,b],其導函數(shù)的圖象如圖所示,則函數(shù)y=f(x)的減區(qū)間是( 。
A、(x1,x3
B、(x2,x4
C、(x4,x6
D、(x5,x6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

根據(jù)下列條件分別求直線l1,l2的方程:
(Ⅰ)l1經(jīng)過點A(0,2),B(3,-3);
(Ⅱ)l2平行于直線l0:3x+4y-12=0,且與它的距離為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=x2+2xf'(1),則f(x)在x=-
1
2
的切線方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

AC
-
DP
)+(
CP
-
BD
)=
 

查看答案和解析>>

同步練習冊答案