7.拋物線y2=8x的焦點為F,準線為l,A,B是拋物線上的兩個動點,且滿足$∠AFB=\frac{2π}{3}$,過線段AB的中點M作直線l的垂線,垂足為N,則$\frac{|MN|}{|AB|}$的最大值,是( 。
A.$\frac{{\sqrt{3}}}{4}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{{\sqrt{3}}}{2}$D.$\sqrt{3}$

分析 設|AF|=a,|BF|=b,連接AF、BF.由拋物線定義得2|MN|=a+b,由余弦定理可得|AB|2=(a+b)2-ab,進而根據(jù)基本不等式,求得|AB|的取值范圍,從而得到本題答案.

解答 解:設|AF|=a,|BF|=b,連接AF、BF,
由拋物線定義,得|AF|=|AQ|,|BF|=|BP|,
在梯形ABPQ中,2|MN|=|AQ|+|BP|=a+b.
由余弦定理得,
|AB|2=a2+b2-2abcos120°=a2+b2+ab,
配方得,|AB|2=(a+b)2-ab,
又∵ab≤($\frac{a+b}{2}$)2,
∴(a+b)2-ab≥(a+b)2-$\frac{1}{4}$(a+b)2
=$\frac{3}{4}$(a+b)2
得到|AB|≥$\frac{\sqrt{3}}{2}$(a+b).
∴$\frac{|MN|}{|AB|}$≤$\frac{1}{2}$$\frac{\frac{1}{2}(a+b)}{\frac{\sqrt{3}}{2}(a+b)}$=$\frac{\sqrt{3}}{3}$,
即$\frac{|MN|}{|AB|}$的最大值為$\frac{\sqrt{3}}{3}$.
故選B.

點評 本題在拋物線中,利用定義和余弦定理求$\frac{|MN|}{|AB|}$的最大值,著重考查拋物線的定義和簡單幾何性質(zhì)、基本不等式求最值和余弦定理的應用等知識,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

11.已知點A(-2,1),B(4,-5).若$\overrightarrow{AM}$=$\frac{1}{2}$$\overrightarrow{AB}$,則向量$\overrightarrow{AM}$的坐標是(3,-3).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知定義在R上的偶函數(shù)f(x)在x≥0時,f(x)=ex+$\sqrt{x}$,若f(a)<f(a-1),則a的取值范圍是
( 。
A.(-∞,1)B.(-∞,$\frac{1}{2}$)C.($\frac{1}{2}$,1)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.設雙曲線的方程為$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$,其左,右焦點分別為F1,F(xiàn)2,若雙曲線右支上一點P滿足∠F1PF2=$\frac{π}{3}$,${S}_{△P{F}_{1}{F}_{2}}$=$3\sqrt{3}{a^2}$,則該雙曲線的離心率為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.△ABC中,角A,B,C所對邊的邊長分別為a,b,c,若$\frac{cosA}{cosB}$=$\frac{a}$,則△ABC一定是(  )
A.等腰三角形B.直角三角形C.等腰直角三角形D.等邊三角形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)f(x)=sinx+$\sqrt{3}$cosx.
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{{x^2},(x≤1)}\\{x+1,(x>1)}\end{array}}\right.$,則f(f(-2))=5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.設函數(shù)f(x)=2x,對于任意的x1,x2(x1≠x2),有下列命題
①f(x1+x2)=f(x1)•f(x2
②f(x1•x2)=f(x1)+f(x2
③$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}>0$
④$f(\frac{{{x_1}+{x_2}}}{2})<\frac{{f({x_1})+f({x_2})}}{2}$
⑤曲線g(x)=x2與曲線f(x)=2x有三個公共點.
其中正確的命題序號是①③④⑤.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.曲線y=sinx+ex在點(0,1)處的切線方程是y=2x+1.

查看答案和解析>>

同步練習冊答案