分析 利用余弦定理,可得4c2=4a2+|PF1|•|PF2|.根據(jù)S△PF1F2=3$\sqrt{3}{a}^{2}$,可得|PF1|•|PF2|=12a2,即可求出雙曲線的離心率.
解答 解:由題意,F(xiàn)1(-c,0),F(xiàn)2(c,0),P(x0,y0).
在△PF1F2中,由余弦定理,得:
|F1F2|2=|PF1|2+|PF2|2-2|PF1|•|PF2|•cos$\frac{π}{3}$
=(|PF1|-|PF2|)2+|PF1|•|PF2|.
即4c2=4a2+|PF1|•|PF2|.
又∵S△PF1F2=3$\sqrt{3}{a}^{2}$.
∴$\frac{1}{2}$|PF1|•|PF2|•sin$\frac{π}{3}$=3$\sqrt{3}{a}^{2}$.
∴|PF1|•|PF2|=12a2.
∴4c2=4a2+12a2,即c=2a.
∴e=$\frac{c}{a}$=2.
故答案為:2.
點評 此題是個中檔題.考查雙曲線的定義及利用余弦定理解圓錐曲線的焦點三角形,解題過程注意整體代換的方法,簡化計算.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{\sqrt{3}}}{4}$ | B. | $\frac{{\sqrt{3}}}{3}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com