分析 (1)直接利用基本不等式的性質(zhì)求解.
(2)利用“乘1法”與基本不等式的性質(zhì)即可得出.
解答 解:(1)∵x>0,y>0,$\frac{1}{x}$+$\frac{9}{y}$=1,
那么:1=$\frac{1}{x}$+$\frac{9}{y}$≥2$\sqrt{\frac{1}{x}•\frac{9}{y}}$=$\frac{6}{\sqrt{xy}}$,當(dāng)且僅當(dāng)9x=y,即x=2,y=18時(shí)取等號(hào).
即:$\sqrt{xy}≥6$,
所以:xy的最小值36.
(2))∵x>0,y>0,$\frac{1}{x}$+$\frac{9}{y}$=1,
那么:x+2y=(x+2y)($\frac{1}{x}$+$\frac{9}{y}$)=$1+\frac{2y}{x}+\frac{9x}{y}+18$$≥19+2\sqrt{\frac{2y}{x}\frac{9x}{y}}=19+6\sqrt{2}$,當(dāng)且僅當(dāng)3x=$\sqrt{2}$y,即x=$\sqrt{6}+6\sqrt{2}$,y=$\frac{3\sqrt{3}+18}{2}$時(shí)取等號(hào).
所以:x+2y的最小值為$19+6\sqrt{2}$.
點(diǎn)評(píng) 本題考查了基本不等式的性質(zhì)的運(yùn)用能力.屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y′=(1+ex)cosx+exsinx | B. | y′=cosx+exsinx | ||
C. | y′=(1+ex)cosx-exsinx | D. | y′=cosx-exsinx |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30 | B. | 36 | C. | 42 | D. | 48 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [2kπ+$\frac{π}{3}$,2kπ+$\frac{4π}{3}$](k∈Z) | B. | [2kπ-$\frac{π}{3}$,2kπ+$\frac{2π}{3}$](k∈Z) | ||
C. | [2kπ-$\frac{2π}{3}$,2kπ+$\frac{π}{3}$](k∈Z) | D. | [2kπ-$\frac{2π}{3}$,2kπ+$\frac{4π}{3}$](k∈Z) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | C${\;}_{3}^{2}$C${\;}_{198}^{3}$ | B. | C${\;}_{3}^{2}$C${\;}_{197}^{3}$+C${\;}_{3}^{3}$C${\;}_{197}^{2}$ | ||
C. | C${\;}_{200}^{5}$-C${\;}_{197}^{4}$ | D. | C${\;}_{200}^{5}$-C${\;}_{3}^{1}$C${\;}_{197}^{4}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com