20.在正方體ABCD-A1B1C1D1中,($\overrightarrow{{A}_{1}{D}_{1}}$-$\overrightarrow{{A}_{1}A}$)-$\overrightarrow{AB}$=( 。
A.$\overrightarrow{{D}_{1}A}$B.$\overrightarrow{A{D}_{1}}$C.$\overrightarrow{B{D}_{1}}$D.$\overrightarrow{{D}_{1}B}$

分析 利用向量的三角形法則即可得出.

解答 解:($\overrightarrow{{A}_{1}{D}_{1}}$-$\overrightarrow{{A}_{1}A}$)-$\overrightarrow{AB}$=$\overrightarrow{A{D}_{1}}$-$\overrightarrow{AB}$=$\overrightarrow{B{D}_{1}}$,
故選:C.

點評 本題考查了向量的三角形法則,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

10.已知y=f(x)=Asin(ωx+φ),A>0,ω>0,|φ|<$\frac{π}{2}$的圖象相鄰兩條對稱軸之間的距離為$\frac{π}{2}$,相鄰兩個最值點間的距離為$\frac{1}{2}\sqrt{64+{π^2}}$,圖象過點(0,1).
(1)求函數(shù)解析式;
(2)把y=f(x)圖象向右平移m(m>0)個單位,所得圖象關(guān)于x=$\frac{π}{3}$對稱,求m的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.設(shè)函數(shù)f(x)=ex(2x-1)-ax+a,其中a<1,若存在唯一的整數(shù)x0,使得f(x0)<0,則a的取值范圍是[$\frac{3}{2e}$,1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.若a>b>0,則下列不等式成立的是( 。
A.ac2>bc2(c∈R)B.$\frac{a+b}{2}>\sqrt{\frac{{a}^{2}+^{2}}{2}}$C.0.2a>0.2bD.2a$>ln\frac{1}{b+1}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.與直線3x+4y+5=0關(guān)于x軸對稱的直線方程為( 。
A.3x-4y-5=0B.3x+4y-5=0C.3x-4y+5=0D.3x+4y+5=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.設(shè)函數(shù)f(x)的定義域為D,如果?x∈D存在唯一的y∈D,使$\frac{f(x)+f(y)}{2}$=C(C為常數(shù))成立,則稱函數(shù)f(x)在D上的“均值”為C,已知四個函數(shù):
①f(x)=x3(x∈R);
②f(x)=($\frac{1}{2}$)x(x∈R);
③f(x)=lnx(x∈(0,+∞))
④f(x)=2sinx(x∈R)
上述四個函數(shù)中,滿足所在定義域上“均值”為1的函數(shù)是①③.(填入所有滿足條件函數(shù)的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.集合A={x|(1+x)(1-x)>0},B={x|y=$\sqrt{x}$},則A∩B=(  )
A.(-1,1)B.(0,1)C.[0,1)D.(-1,0]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知扇形的半徑為1cm,圓心角為2rad,則該扇形的面積為1cm2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.在平面內(nèi),已知四邊形ABCD,CD⊥AD,∠CBD=$\frac{π}{12}$,AD=5,AB=7,且cos2∠ADB+3cos∠ADB=1,則BC的長為4$\sqrt{6}$-4$\sqrt{2}$.

查看答案和解析>>

同步練習冊答案