分析 (Ⅰ)連結AC,由題意和面面垂直的判定定理可得;
(Ⅱ)取AB中點E,連結NE,由VN-ABD=VB-AND和三棱錐的體積公式可得距離d的方程,解方程可得.
解答 解:(Ⅰ)證明:連結AC,
∵四邊形ABCD是菱形,∴AB=BC
又∵∠ABC=60°,∴△ABC是等邊三角形,
∵M是BC中點,∴AM⊥BC,
∵PA⊥平面ABCD,BC?平面ABCD,
∴PA⊥BC,在平面PMA中AM∩PA=A,∴BC⊥平面PMA
∴平面PBC⊥平面PMA;
(Ⅱ)取AB中點E,連結NE,則NE∥PA,∴NE⊥平面ABCD,$NE=\frac{1}{2}PA=\frac{{\sqrt{6}}}{2}$,
過點E作AD的垂線,交DA延長線于點F,連結NF,易知NF⊥DA,
在Rt△EFA中,AE=1,∠EAF=60°,∴$EF=\frac{{\sqrt{3}}}{2}$
在Rt△NEF中,$NE=\frac{{\sqrt{6}}}{2},EF=\frac{{\sqrt{3}}}{2},∠NEF=90°$,∴$NF=\frac{3}{2}$
∴${S_{△AND}}=\frac{1}{2}AD•NF=\frac{1}{2}•2•\frac{3}{2}=\frac{3}{2}$,${S_{△ABD}}=\frac{1}{2}AB•ADsin∠BAD=\sqrt{3}$
設點B到平面AND的距離為d,由VN-ABD=VB-AND,
得$\frac{1}{3}•NE•{S_{△ABD}}=\frac{1}{3}•d•{S_{△AND}}$,即$\frac{{\sqrt{6}}}{2}•\sqrt{3}=d•\frac{3}{2}$,∴$d=\sqrt{2}$
∴點B到平面AND的距離為$\sqrt{2}$
點評 本題考查立體幾何的綜合問題,涉及平行和垂直關系以及空間距離的求解,屬中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com