7.已知函數(shù)$f(x)=\left\{\begin{array}{l}{x^2},\;\;x>0\\-f(x+1),x≤0.\end{array}\right.$則f(-3)的值為( 。
A.1B.-1C.0D.-9

分析 直接利用函數(shù)的解析式化簡(jiǎn)求解即可.

解答 解:函數(shù)$f(x)=\left\{\begin{array}{l}{x^2},\;\;x>0\\-f(x+1),x≤0.\end{array}\right.$,
則f(-3)=-f(-2)=f(-1)=-f(0)=f(1)=1.
故選:A.

點(diǎn)評(píng) 本題考查分段函數(shù)的應(yīng)用,函數(shù)值的求法,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.去年某工廠的產(chǎn)值月平均增長(zhǎng)率為a,求該工廠去年產(chǎn)值的年增長(zhǎng)率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.若sin2β-sin2α=m,則sin(α+β)sin(α-β)=-m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知點(diǎn)C在以O(shè)為圓心的圓弧AB上運(yùn)動(dòng)(含端點(diǎn)).$\overrightarrow{OA}•\overrightarrow{OB}=0$,$\overrightarrow{OC}$=x$\overrightarrow{OA}$+2y$\overrightarrow{OB}$(x,y∈R),則$\frac{x}{2}+y$的取值范圍是(  )
A.$[-\frac{{\sqrt{2}}}{2},\frac{{\sqrt{2}}}{2}]$B.$[\frac{1}{2},\frac{{\sqrt{2}}}{2}]$C.$[-\frac{1}{2},\frac{1}{2}]$D.$[-\frac{{\sqrt{2}}}{2},\frac{1}{2}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.函數(shù)$y=\frac{{\sqrt{x+3}}}{x}+lg({2-x})$的定義域?yàn)閇-3,0)∪(0,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知函數(shù)f(x)=x2+ax+b的零點(diǎn)是-3和1,則函數(shù)g(x)=log2(ax+b)的零點(diǎn)是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知正項(xiàng)數(shù)列{an}的首項(xiàng)a1=1,前n項(xiàng)的和為Sn,且滿足:當(dāng)n≥2時(shí),an=$\sqrt{{S}_{n}}$+$\sqrt{{S}_{n-1}}$.
(1)證明:數(shù)列{$\sqrt{{S}_{n}}$}為等差數(shù)列.
(2)若數(shù)列{$\frac{1}{{a}_{n}•{a}_{n+1}}$}前n項(xiàng)的和為T(mén)n,求Tn的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.(1)求圓心為點(diǎn)C(8,-3),且過(guò)點(diǎn)A(5,1)圓的標(biāo)準(zhǔn)方程;
(2)求經(jīng)過(guò)點(diǎn)(1,-7)與圓x2+y2=25相切的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.在等腰三角形ABC中,A=90°,AB=3
(1)在三角形ABC中任取一點(diǎn),離三個(gè)頂點(diǎn)距離都不小于1的概率.
(2)在BC邊上任取一點(diǎn)M使BM>$\frac{\sqrt{2}}{2}$AB的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案