【題目】某租賃公司擁有汽車100輛.當(dāng)每輛車的月租金為3 000元時,可全部租出.當(dāng)每輛車的月租金每增加50元時,未租出的車將會增加一輛.租出的車每輛每月需要維護費150元,未租出的車每輛每月需要維護費50元.
(1)當(dāng)每輛車的月租金定為3 600元時,能租出多少輛車?
(2)當(dāng)每輛車的月租金定為多少元時,租賃公司的月收益最大?最大月收益是多少?
【答案】(1) 88(2)當(dāng)每輛車的月租金定為4 050元時,月收益最大,其值為307 050元
【解析】
試題分析:(1)當(dāng)每輛車的月租金為x元時,租出的車輛100-(輛),把x=3600代入計算;
(2)設(shè)每輛車的月租金為x元,租賃公司的月收益函數(shù)y,建立函數(shù)解析式,求出最大值即可
試題解析:(1)當(dāng)每輛車的月租金定為3 600元時,未租出的車輛數(shù)為=12,所以這時租出了100-12=88輛車.
(2)設(shè)每輛車的月租金定為x元,則租賃公司的月收益為
f(x)=(x-150)-×50=-(x-4 050)2+307 050.
所以,當(dāng)x=4 050 時,f(x)最大,其最大值為f(4 050)=307 050.
當(dāng)每輛車的月租金定為4 050元時,月收益最大,其值為307 050元.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某居民區(qū)隨機抽取10個家庭,獲得第i個家庭的月收入xi(單位:千元)與月儲蓄yi(單位:千元)的數(shù)據(jù)資料,算得=80, =20, =184, =720.
(Ⅰ)求家庭的月儲蓄y對月收入x的線性回歸方程y=bx+a;
(Ⅱ)判斷變量x與y之間是正相關(guān)還是負(fù)相關(guān);
(Ⅲ)若該居民區(qū)某家庭月收入為7千元,預(yù)測該家庭的月儲蓄.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】把10個相同的小球分成三堆,要求每一堆至少有1個,至多5個,則不同的方法共有
A. 6種 B. 5種 C. 4種 D. 3種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中日“釣魚島爭端”問題越來越引起社會關(guān)注,我校對高一名學(xué)生進行了一次“釣魚島”知識測試,并從中抽取了部分學(xué)生的成績,(滿分分)作為樣本,繪制了下面尚未完成的頻率分布表和頻率分布直方圖.
(1)填寫答題卡頻率分布表中的空格, 補全頻率分布直方圖, 并標(biāo)出每個小矩形對應(yīng)的縱軸數(shù)據(jù);
(2)請你估算該年級的平均數(shù)及中位數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:,橢圓以的長軸為短軸,且與有相同的離心率.
(1)求橢圓的方程;
(2)設(shè)為坐標(biāo)原點,點分別在橢圓和上,,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個幾何體的三視圖如圖所示,已知正(主)視圖是底邊長為1的平行四邊形,側(cè)(左)視圖是一個長為,寬為1的矩形,俯視圖為兩個邊長為1的正方形拼成的矩形.
(1)求該幾何體的體積;
(2)求該幾何體的表面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法錯誤的是( )
A. 平行于同一個平面的兩個平面平行
B. 平行于同一直線的兩個平面平行
C. 垂直于同一個平面的兩條直線平行
D. 垂直于同一條直線的兩個平面平行
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com