精英家教網 > 高中數學 > 題目詳情

【題目】已知橢圓 的離心率為,以原點為圓心,橢圓C的短半軸長為半徑的圓與直線相切.、是橢圓的左、右頂點,直線點且與軸垂直.

(1)求橢圓的標準方程;

(2)設是橢圓上異于、的任意一點,作軸于點,延長到點使得,連接并延長交直線于點為線段的中點,判斷直線與以為直徑的圓的位置關系,并證明你的結論.

【答案】(Ⅰ);(Ⅱ)相切

【解析】試題分析:(1)根據點到直線距離公式得 ,再根據離心率得 (2) 設,依次得Q,M,N坐標,即得QN方程,再利用點到直線距離公式得圓心到直線距離,最后根據圓心到直線距離與半徑關系確定直線與以為直徑的圓的位置關系

試題解析:(Ⅰ)由題意:到直線的距離為,則

橢圓C的標準方程為

(Ⅱ)設,則

直線的方程為

聯立得:

則直線的方程為

方程可化為

到直線的距離為

故直線與以AB為直徑的圓O相切.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某舉重運動隊為了解隊員的體重分布情況,從50名隊員中抽取10名作調查.抽取時現將全體隊員隨機按1~50編號,并按編號順序平均分成10組,每組抽一名,且各組內抽取的編號依次增加5進行系統(tǒng)抽樣.

(1)若第5組抽出的號碼為22,寫出所有被抽取出來的編號;

(2)分別統(tǒng)計被抽取的10名隊員的體重(單位:公斤),獲得如圖所示的體重數據的莖葉圖,根據莖葉圖求該樣本的平均數和中位數;

(3)在題(2)的莖葉圖中,從題中不輕于73公斤的隊員中隨機抽取2名隊員的體重數據,求體重為81公斤的隊員被抽到的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,矩形中, 為邊的中點,將沿直線翻轉成.若為線段的中點,則在翻折過程中:

是定值;②點在某個球面上運動;

③存在某個位置,使;④存在某個位置,使平面.

其中正確的命題是_________.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=loga(1﹣x)+loga(x+3),其中0<a<1.
(1)求函數f(x)的定義域;
(2)若函數f(x)的最小值為﹣4,求a的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四邊形都是邊長為的正方形,點的中點, 平面.

(1)求證 平面

(2)求證:平面平面;

(3)求平面與平面所成銳二面角的正切值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的兩個焦點分別為,短軸的兩個端點分別為.

(Ⅰ)若為等邊三角形,求橢圓的方程;

(Ⅱ)若橢圓的短軸長為,過點的直線與橢圓相交于兩點,且,求直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的兩個焦點分別為,短軸的兩個端點分別為.

(Ⅰ)若為等邊三角形,求橢圓的方程;

(Ⅱ)若橢圓的短軸長為,過點的直線與橢圓相交于兩點,且,求直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知二次函數f(x)滿足f(0)=2和f(x+1)﹣f(x)=2x﹣1對任意實數x都成立.
(1)求函數f(x)的解析式;
(2)當t∈[﹣1,3]時,求y=f(2t)的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某社區(qū)超市購進了A,B,C,D四種新產品,為了解新產品的銷售情況,該超市隨機調查了15位顧客(記為)購買這四種新產品的情況,記錄如下(單位:件):

A

1

1

1

1

1

B

1

1

1

1

1

1

1

1

C

1

1

1

1

1

1

1

D

1

1

1

1

1

1

(Ⅰ)若該超市每天的客流量約為300人次,一個月按30天計算,試估計產品A的月銷售量(單位:件);

(Ⅱ)為推廣新產品,超市向購買兩種以上(含兩種)新產品的顧客贈送2元電子紅包.現有甲、乙、丙三人在該超市購物,記他們獲得的電子紅包的總金額為X,

求隨機變量X的分布列和數學期望;

(Ⅲ)若某顧客已選中產品B,為提高超市銷售業(yè)績,應該向其推薦哪種新產品?(結果不需要證明)

查看答案和解析>>

同步練習冊答案