14.(1+2i)(a+i)(i是虛數(shù)單位)的實(shí)部與虛部相等,則實(shí)數(shù)a=-3.

分析 直接由復(fù)數(shù)代數(shù)形式的乘法運(yùn)算化簡,結(jié)合已知條件即可求出實(shí)數(shù)a的值.

解答 解:∵(1+2i)(a+i)=a-2+(1+2a)i的實(shí)部與虛部相等,
∴a-2=1+2a,解得a=-3.
故答案為:-3.

點(diǎn)評 本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.平面向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(6,3),$\overrightarrow{c}$=m$\overrightarrow{a}$+$\overrightarrow$(m∈R),且$\overrightarrow{c}$與$\overrightarrow{a}$的夾角等于$\overrightarrow{c}$與$\overrightarrow$的夾角相等,則m=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在正項(xiàng)數(shù)列{an}中,若a1=1,且對所有n∈N*滿足nan+1-(n+1)an=0,則a2017=( 。
A.1013B.1014C.2016D.2017

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的離心率為e=$\sqrt{3}$,點(diǎn)為C上的一個(gè)動(dòng)點(diǎn),A1A2分別為的左、右頂點(diǎn),則直線A1P與直線A2P的斜率之積為( 。
A.-2B.2C.3D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.    四棱錐P-ABCD的底面ABCD為邊長為2的正方形,PA=2,PB=PD=2$\sqrt{2}$,E,F(xiàn),G,H分別為棱PA,PB,AD,CD的中點(diǎn).
(1)求CD與平面CFG所成角的正弦值;
(2)是探究棱PD上是否存在點(diǎn)M,使得平面CFG⊥平面MEH,若存在,求出$\frac{PM}{PD}$的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.(1)已知正數(shù)a,b滿足2a+b≤ab,求證:a+2b≥9.
(2)求證:1,$\sqrt{2}$,3不可能是一個(gè)等差數(shù)列中的三項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知m∈R,復(fù)數(shù)$\frac{m-2i}{1+i}$是純虛數(shù)(其中i是虛數(shù)單位),則實(shí)數(shù)m=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列命題正確的是(  )
A.$\overrightarrow{a}$與$\overrightarrow$共線,$\overrightarrow$與$\overrightarrow{c}$共線,則$\overrightarrow{a}$與$\overrightarrow{c}$也共線
B.單位向量都相等
C.向量$\overrightarrow{a}$與$\overrightarrow$不共線,則$\overrightarrow{a}$與$\overrightarrow$都是非零向量
D.共線向量一定在同一直線上

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.學(xué)校器材室有10個(gè)籃球,其中6個(gè)好球,4個(gè)球輕微漏氣,甲、乙二人依次不放回各拿取一個(gè)球,則甲、乙二人至少有一個(gè)拿到好球的概率是 ( 。
A.$\frac{3}{5}$B.$\frac{1}{2}$C.$\frac{13}{15}$D.$\frac{4}{5}$

查看答案和解析>>

同步練習(xí)冊答案