9.若復(fù)數(shù)a+$\frac{10}{a+i}$是純虛數(shù),則實(shí)數(shù)a的值是(  )
A.1B.-1C.3D.0

分析 利用復(fù)數(shù)的運(yùn)算法則、純虛數(shù)的定義即可得出.

解答 解:復(fù)數(shù)$a+\frac{10}{a+i}$=a+$\frac{10(a-i)}{(a+i)(a-i)}$=a+$\frac{10a}{{a}^{2}+1}$-$\frac{10i}{{a}^{2}+1}$是純虛數(shù),
∴a+$\frac{10a}{{a}^{2}+1}$=0,-$\frac{10}{{a}^{2}+1}$≠0,∴a=0.
故選:D.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、純虛數(shù)的定義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知f(x)=sin(x+θ)+$\sqrt{3}$cos(x+θ)的一條對(duì)稱軸為y軸,且θ∈(0,π),求θ=( 。
A.$\frac{π}{6}$B.$\frac{π}{2}$C.$\frac{π}{3}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.一個(gè)正項(xiàng)等比數(shù)列{an}的前n項(xiàng)和為2,其后2n項(xiàng)的和為12,則再后面3n項(xiàng)的和為(  )
A.-378B.62C.72D.112

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若(x2+ax+1)6(a>0)的展開式中x2的系數(shù)是66,則實(shí)數(shù)a的值為( 。
A.4B.3C.2D.l

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知平面上的點(diǎn)集A及點(diǎn)P,在集合A內(nèi)任取一點(diǎn)Q,線段PQ長(zhǎng)度的最小值稱為點(diǎn)P到集合A的距離,記作d(P,A),如果A={(x,y)|x2+y2=1},點(diǎn)P坐標(biāo)為$(2\sqrt{2},2\sqrt{2})$,那么d(P,A)=2;如果點(diǎn)集A所表示的圖象是半徑為2的圓,那么點(diǎn)集D={P|d(P,A)≤1}所表示的圖形的面積為8π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在單位圓O的一條直徑上隨機(jī)取一點(diǎn)Q,則過點(diǎn)Q且與該直徑垂直的弦長(zhǎng)長(zhǎng)度不超過1的概率為( 。
A.$\frac{{\sqrt{3}}}{2}$B.$1-\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{3}}}{4}$D.$1-\frac{{\sqrt{3}}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.將根式$\root{5}{{{a^{-3}}}}$化為分?jǐn)?shù)指數(shù)冪是( 。
A.a${\;}^{-\frac{3}{5}}$B.a${\;}^{\frac{5}{3}}$C.-a${\;}^{\frac{3}{5}}$D.-${a}^{\frac{5}{3}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.函數(shù)f(x)對(duì)于任意的x1,x2∈R+恒有f(x1+x2)=f(x1)+f(x2)成立,且f(1)=$\frac{1}{4}$,則f(2015)=$\frac{2015}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.以T=4為周期的函數(shù)f(x)=$\left\{\begin{array}{l}{λ\sqrt{1-{x}^{2}}(x∈(-1,1])}\\{3-3|x-2|(x∈(1,3])}\end{array}\right.$(其中λ>0),若方程f(x)=x恰有5個(gè)實(shí)數(shù)解,則λ的取值范圍是( 。
A.(4,8)B.(4,3$\sqrt{7}$)C.($\sqrt{15}$,3$\sqrt{7}$)D.($\sqrt{15}$,8)

查看答案和解析>>

同步練習(xí)冊(cè)答案