在數(shù)列中,,,對(duì)任意成立,令,且是等比數(shù)列.
(1)求實(shí)數(shù)的值;
(2)求數(shù)列的通項(xiàng)公式;
(3)求證:.
(1);(2);(3)詳見(jiàn)解析.

試題分析:(1)先利用題中的定義,利用數(shù)列的前三項(xiàng)成等比數(shù)列求出的值,然后就的值進(jìn)行檢驗(yàn),即對(duì)數(shù)列是否為等比數(shù)列進(jìn)行檢驗(yàn);(2)根據(jù)等比數(shù)列的通項(xiàng)選擇累加法求數(shù)列的通項(xiàng)公式;(3)利用,將數(shù)列從第三項(xiàng)開始放縮為一個(gè)等比數(shù)列,而前面兩項(xiàng)的值保持不變,再利用數(shù)列求和即可證明相應(yīng)的數(shù)列不等式.
試題解析:(1),,,
,,,
數(shù)列為等比數(shù)列,,即,解得(舍),
當(dāng)時(shí),,即,
,所以滿足條件;
(2),數(shù)列為等比數(shù)列,,
,,,
,;
(3),

.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知等差數(shù)列{an}中,首項(xiàng)a1=1,公差d為整數(shù),且滿足a1+3<a3,a2+5>a4,數(shù)列{bn}滿足bn=,其前n項(xiàng)和為Sn
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若S2為S1,Sm (m∈N)的等比中項(xiàng),求正整數(shù)m的值.
(3)對(duì)任意正整數(shù)k,將等差數(shù)列{an}中落入?yún)^(qū)間(2k,22k)內(nèi)項(xiàng)的個(gè)數(shù)記為ck,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知等差數(shù)列的前項(xiàng)和為,,且,.
(Ⅰ)求
(Ⅱ)若,求的值和的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)為數(shù)列的前項(xiàng)和,對(duì)任意的,都有為正常數(shù)).
(1)求證:數(shù)列是等比數(shù)列;
(2)數(shù)列滿足,,求數(shù)列的通項(xiàng)公式;
(3)在滿足(2)的條件下,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在數(shù)列中,,記是數(shù)列的前項(xiàng)和,則=    .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

等差數(shù)列{}的前n項(xiàng)和為,若,那么=        

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)等差數(shù)列的首項(xiàng)及公差均是正整數(shù),前項(xiàng)和為,且,,則=    

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

數(shù)列中,且數(shù)列是等差數(shù)列,則=(      )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若數(shù)列的通項(xiàng)公式,記,試計(jì)算          ,推測(cè)              .

查看答案和解析>>

同步練習(xí)冊(cè)答案