【題目】我國是世界上嚴(yán)重缺水的國家,某市為了制定合理的節(jié)水方案,對居民用水情況進(jìn)行了調(diào)查,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),…[4,4.5]分成9組,制成了如圖所示的頻率分布直方圖.
(1)求直方圖中的a值;
(2)設(shè)該市有30萬居民,估計全市居民中月均用水量不低于3噸的人數(shù).說明理由;
(3)估計居民月均用水量的中位數(shù).

【答案】
(1)

解:∵1=(0.08+0.16+a+0.42+0.50+a+0.12+0.08+0.04)×0.5,整理可得:2=1.4+2a,

∴解得:a=0.3.


(2)

解:估計全市居民中月均用水量不低于3噸的人數(shù)為3.6萬,理由如下:

由已知中的頻率分布直方圖可得月均用水量不低于3噸的頻率為(0.12+0.08+0.04)×0.5=0.12,

又樣本容量=30萬,

則樣本中月均用水量不低于3噸的戶數(shù)為30×0.12=3.6萬


(3)

解:根據(jù)頻率分布直方圖,得;

0.08×0.5+0.16×0.5+0.30×0.5+0.42×0.5=0.48<0.5,

0.48+0.5×0.5=0.73>0.5,

設(shè)中位數(shù)為a,則中位數(shù)a=2+ =2.04


【解析】(1)先根據(jù)頻率分布直方圖中的頻率等于縱坐標(biāo)乘以組距求出9個矩形的面積即頻率,再根據(jù)直方圖的總頻率為1求出a的值;(II)根據(jù)已知中的頻率分布直方圖先求出月均用水量不低于3噸的頻率,結(jié)合樣本容量為30萬,進(jìn)而得解.(Ⅲ)根據(jù)頻率分布直方圖,求出使直方圖中左右兩邊頻率相等對應(yīng)的橫坐標(biāo)的值;本題用樣本估計總體,是研究統(tǒng)計問題的一個基本思想方法.頻率分布直方圖中小長方形的面積=組距× ,各個矩形面積之和等于1,能根據(jù)直方圖求眾數(shù)和中位數(shù),屬于常規(guī)題型.
【考點精析】掌握頻率分布直方圖和平均數(shù)、中位數(shù)、眾數(shù)是解答本題的根本,需要知道頻率分布表和頻率分布直方圖,是對相同數(shù)據(jù)的兩種不同表達(dá)方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息;⑴平均數(shù)、眾數(shù)和中位數(shù)都是描述一組數(shù)據(jù)集中趨勢的量;⑵平均數(shù)、眾數(shù)和中位數(shù)都有單位;⑶平均數(shù)反映一組數(shù)據(jù)的平均水平,與這組數(shù)據(jù)中的每個數(shù)都有關(guān)系,所以最為重要,應(yīng)用最廣;⑷中位數(shù)不受個別偏大或偏小數(shù)據(jù)的影響;⑸眾數(shù)與各組數(shù)據(jù)出現(xiàn)的頻數(shù)有關(guān),不受個別數(shù)據(jù)的影響,有時是我們最為關(guān)心的數(shù)據(jù).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的展開式中,前三項系數(shù)的絕對值依次成等差數(shù)列.

(1)求展開式中的常數(shù)項;

(2)求展開式中所有整式項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)在研究函數(shù)fx)=xR時,分別給出下面幾個結(jié)論:

①等式f(-x)=-fx)在xR時恒成立;

②函數(shù)fx)的值域為(-1,1);

③若x1x2,則一定有fx1)≠fx2);

④方程fx)=xR上有三個根.

其中正確結(jié)論的序號有______.(請將你認(rèn)為正確的結(jié)論的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列敘述:

①化簡的結(jié)果為﹣

②函數(shù)y=在(﹣∞,﹣1)和(﹣1,+∞)上是減函數(shù);

③函數(shù)y=log3x+x2﹣2在定義域內(nèi)只有一個零點;

④定義域內(nèi)任意兩個變量x1,x2,都有,則f(x)在定義域內(nèi)是增函數(shù).

其中正確的結(jié)論序號是_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,當(dāng)P(x,y)不是原點時,定義P的“伴隨點”為P′( , ),當(dāng)P是原點時,定義“伴隨點”為它自身,現(xiàn)有下列命題:
①若點A的“伴隨點”是點A′,則點A′的“伴隨點”是點A.
②單元圓上的“伴隨點”還在單位圓上.
③若兩點關(guān)于x軸對稱,則他們的“伴隨點”關(guān)于y軸對稱
④若三點在同一條直線上,則他們的“伴隨點”一定共線.
其中的真命題是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的首項為1,Sn為數(shù)列{an}的前n項和,Sn+1=qSn+1,其中q>0,n∈N+
(1)若a2 , a3 , a2+a3成等差數(shù)列,求數(shù)列{an}的通項公式;
(2)設(shè)雙曲線x2 =1的離心率為en , 且e2=2,求e12+e22+…+en2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=ax2﹣a﹣lnx,g(x)= ,其中a∈R,e=2.718…為自然對數(shù)的底數(shù).
(1)討論f(x)的單調(diào)性;
(2)證明:當(dāng)x>1時,g(x)>0;
(3)確定a的所有可能取值,使得f(x)>g(x)在區(qū)間(1,+∞)內(nèi)恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,∠BCD=60°,AB=2AD,PD⊥平面ABCD,點MPC的中點.

(1)求證:PA∥平面BMD;

(2)求證:ADPB;

(3)若AB=PD=2,求點A到平面BMD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為激勵創(chuàng)新,計劃逐年加大研發(fā)資金投入.若該公司2015年全年投入研發(fā)資金130萬元,在此基礎(chǔ)上,每年投入的研發(fā)資金比上一年增長12%,則該公司全年投入的研發(fā)資金開始超過200萬元的年份是( 。
(參考數(shù)據(jù):lg1.12=0.05,lg1.3=0.11,lg2=0.30)
A.2018年
B.2019年
C.2020年
D.2021年

查看答案和解析>>

同步練習(xí)冊答案