精英家教網 > 高中數學 > 題目詳情

【題目】設函數f(x)=ax2﹣a﹣lnx,g(x)= ,其中a∈R,e=2.718…為自然對數的底數.
(1)討論f(x)的單調性;
(2)證明:當x>1時,g(x)>0;
(3)確定a的所有可能取值,使得f(x)>g(x)在區(qū)間(1,+∞)內恒成立.

【答案】
(1)

解:由f(x)=ax2﹣a﹣lnx,得f′(x)=2ax﹣ = (x>0),

當a≤0時,f′(x)<0在(0,+∞)成立,則f(x)為(0,+∞)上的減函數;

當a>0時,由f′(x)=0,得x= = ,

∴當x∈(0, )時,f′(x)<0,當x∈( ,+∞)時,f′(x)>0,

則f(x)在(0, )上為減函數,在( ,+∞)上為增函數;

綜上,當a≤0時,f(x)為(0,+∞)上的減函數,當a>0時,f(x)在(0, )上為減函數,在( ,+∞)上為增函數;


(2)

證明:要證g(x)>0(x>1),即 >0,

即證 ,也就是證

令h(x)= ,則h′(x)= ,

∴h(x)在(1,+∞)上單調遞增,則h(x)min=h(1)=e,

即當x>1時,h(x)>e,∴當x>1時,g(x)>0;


(3)

解:由f(x)>g(x),得 ,

設t(x)=

由題意知,t(x)>0在(1,+∞)內恒成立,

∵t(1)=0,

∴有t′(x)=2ax = ≥0在(1,+∞)內恒成立,

令φ(x)= ,

則φ′(x)= = ,

當x≥2時,φ′(x)>0,

令h(x)= ,h′(x)= ,函數在[1,2)上單調遞增,∴h(x)min=h(1)=﹣1.

又2a≥1,e1x>0,∴1<x<2,φ′(x)>0,

綜上所述,x>1,φ′(x)>0,φ(x)在區(qū)間(1,+∞)單調遞增,

∴t′(x)>t′(1)≥0,即t(x)在區(qū)間(1,+∞)單調遞增,

∴a≥


【解析】(1)求導數,分類討論,即可討論f(x)的單調性;
(2)要證g(x)>0(x>1),即 >0,即證 ,也就是證 ;
(3)由f(x)>g(x),得 ,設t(x)= ,由題意知,t(x)>0在(1,+∞)內恒成立,再構造函數,求導數,即可確定a的取值范圍;
本題考查導數知識的綜合運用,考查函數的單調性,不等式的證明,考查恒成立成立問題,正確構造函數,求導數是關鍵.
【考點精析】解答此題的關鍵在于理解函數的奇偶性的相關知識,掌握偶函數的圖象關于y軸對稱;奇函數的圖象關于原點對稱,以及對利用導數研究函數的單調性的理解,了解一般的,函數的單調性與其導數的正負有如下關系: 在某個區(qū)間內,(1)如果,那么函數在這個區(qū)間單調遞增;(2)如果,那么函數在這個區(qū)間單調遞減.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】△ABC的內角A,B,C的對邊分別為a,b,c,已知2cosC(acosB+bcosA)=c.
(1)求C;
(2)若 的面積為 ,求△ABC的周長.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=4x+3sinx,x∈(-1,1),如果f(1-a)+f(1-a2)<0成立,則實數a的取值范圍為(  )

A. (0,1) B. C. D. (-∞,-2)∪(1,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】我國是世界上嚴重缺水的國家,某市為了制定合理的節(jié)水方案,對居民用水情況進行了調查,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數據按照[0,0.5),[0.5,1),…[4,4.5]分成9組,制成了如圖所示的頻率分布直方圖.
(1)求直方圖中的a值;
(2)設該市有30萬居民,估計全市居民中月均用水量不低于3噸的人數.說明理由;
(3)估計居民月均用水量的中位數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=ln(ax+1)(x≥0,a>0), .

(1)討論函數y=f(x)-g(x)的單調性;

(2)若不等式f(x)≥g(x)+1在x∈[0,+∞)時恒成立,求實數a的取值范圍;

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】定義在R上的函數fx)=ax2+x

(Ⅰ)當a>0時,求證:對任意的x1,x2R都有[fx1)+fx2)]成立;

(Ⅱ)當x∈[0,2]時,|fx)|≤1恒成立,求實數a的取值范圍;

(Ⅲ)若a=,點pm,n2)(mZnZ)是函數y=fx)圖象上的點,求mn

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若函數y=f(x)的圖象上存在兩點,使得函數的圖象在這兩點處的切線互相垂直,則稱y=f(x)具有T性質.下列函數中具有T性質的是( 。
A.y=sinx
B.y=lnx
C.y=ex
D.y=x3

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】平面直角坐標系xOy中,橢圓C: =1(a>b>0)的離心率是 ,拋物線E:x2=2y的焦點F是C的一個頂點.
(1)求橢圓C的方程;
(2)設P是E上的動點,且位于第一象限,E在點P處的切線l與C交與不同的兩點A,B,線段AB的中點為D,直線OD與過P且垂直于x軸的直線交于點M.
①求證:點M在定直線上;
②直線l與y軸交于點G,記△PFG的面積為S1 , △PDM的面積為S2 , 求 的最大值及取得最大值時點P的坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某課程考核分理論與實驗兩部分進行,每部分考核成績只記“合格”與“不合格”,兩部分考核都是“合格”,則該課程考核“合格”,若甲、乙、丙三人在理論考核中合格的概率分別為0.9,0.8,0.7,在實驗考核中合格的概率分別為0.8,0.7,0.9,所有考核是否合格相互之間沒有影響.

(1)求甲、乙、丙三人在理論考核中至少有兩人合格的概率;

(2)求這三個人該課程考核都合格的概率(結果保留三位小數).

查看答案和解析>>

同步練習冊答案