【題目】如圖,在三棱柱中,、分別為、的中點(diǎn),,,.
⑴求證:平面;
⑵求二面角的正弦值;
⑶已知為棱上的點(diǎn),若,求線段的長(zhǎng)度.
【答案】(1)證明見解析(2)(3)
【解析】
(1)證明,,再根據(jù),從而得到線面垂直的證明;
(2)以點(diǎn)為坐標(biāo)原點(diǎn),分別以的方向?yàn)?/span>軸的正方向,利用向量法求得二面角的余弦值,再利用同角三角函數(shù)的基本關(guān)系求得正弦值;
(3)結(jié)合(2)中,求得點(diǎn),再求的值,從而求得線段的長(zhǎng)度.
(1)在三角形中,且為的中點(diǎn),
所以.①
在中,,.
連接,在中,,
所以.
又,所以,所以.②
又因?yàn)?/span>,③
由①②③,得平面.
(2)以點(diǎn)為坐標(biāo)原點(diǎn),分別以的方向?yàn)?/span>軸的正方向,建立如圖所示的空間直角坐標(biāo)系,
則,
所以.
設(shè)為平面的法向量,
則有即
令,得所以.
易得,且為平面的法向量,
所以,,
所以.
故所求二面角的正弦值為
(3)由(2)知.
設(shè)點(diǎn),則.
又,,
所以,從而
即點(diǎn).
所以.
所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)閱兵領(lǐng)導(dǎo)小組辦公室介紹,2019年國(guó)慶70周年閱兵有59個(gè)方(梯)隊(duì)和聯(lián)合軍樂(lè)團(tuán),總規(guī)模約1.5萬(wàn)人,是近幾次閱兵中規(guī)模最大的一次.其中,徒步方隊(duì)15個(gè).為了保證閱兵式時(shí)隊(duì)列保持整齊,各個(gè)方隊(duì)對(duì)受閱隊(duì)員的身高也有著非常嚴(yán)格的限制,太高或太矮都不行.徒步方隊(duì)隊(duì)員,男性身高普遍在175cm至185cm之間;女性身高普遍在163cm至175cm之間,這是常規(guī)標(biāo)準(zhǔn).要求最為嚴(yán)格的三軍儀仗隊(duì),其隊(duì)員的身高一般都在184cm至190cm之間.經(jīng)過(guò)隨機(jī)調(diào)查某個(gè)閱兵陣營(yíng)中女子100人,得到她們身高的直方圖,如圖,記C為事件:“某一閱兵女子身高不低于169cm”,根據(jù)直方圖得到P(C)的估計(jì)值為0.5.
(1)求直方圖中a,b的值;
(2)估計(jì)這個(gè)陣營(yíng)女子身高的平均值 (同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校隨機(jī)抽取部分新生調(diào)查其上學(xué)所需時(shí)間(單位:分鐘),并將所得數(shù)據(jù)繪制成頻率分布直方圖(如圖).已知上學(xué)所需時(shí)間的范圍是,樣本數(shù)據(jù)分組為,,,,.
(1)求直方圖中x的值;
(2)如果上學(xué)所需時(shí)間在的學(xué)生可申請(qǐng)?jiān)趯W(xué)校住宿,請(qǐng)估計(jì)該校800名新生中有多少名學(xué)生可以申請(qǐng)住宿.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),則下列命題中正確命題的個(gè)數(shù)是( )
①函數(shù)在上為周期函數(shù)
②函數(shù)在區(qū)間,上單調(diào)遞增
③函數(shù)在()取到最大值,且無(wú)最小值
④若方程()有且僅有兩個(gè)不同的實(shí)根,則
A.個(gè)B.個(gè)C.個(gè)D.個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論的單調(diào)性;
(2)若有兩個(gè)不同的零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】曲線是平面內(nèi)到直線和直線的距離之積等于常數(shù)()的點(diǎn)的軌跡,下列四個(gè)結(jié)論:
①曲線過(guò)點(diǎn);
②曲線關(guān)于點(diǎn)成中心對(duì)稱;
③若點(diǎn)在曲線上,點(diǎn)、分別在直線、上,則不小于;
④設(shè)為曲線上任意一點(diǎn),則點(diǎn)關(guān)于直線,點(diǎn)及直線對(duì)稱的點(diǎn)分別為、、,則四邊形的面積為定值;
其中,所有正確結(jié)論的序號(hào)是________
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=xsinx的圖象是下列兩個(gè)圖象中的一個(gè),如圖,請(qǐng)你選擇后再根據(jù)圖象作出下面的判斷:若x1,x2∈(),且f(x1)<f(x2),則( )
A.x1>x2B.x1+x2>0C.x1<x2D.x12<x22
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正三棱錐P-ABC的側(cè)面是直角三角形,PA=6,頂點(diǎn)P在平面ABC內(nèi)的正投影為點(diǎn)D,D在平面PAB內(nèi)的正投影為點(diǎn)E,連結(jié)PE并延長(zhǎng)交AB于點(diǎn)G.
(Ⅰ)證明:G是AB的中點(diǎn);
(Ⅱ)在圖中作出點(diǎn)E在平面PAC內(nèi)的正投影F(說(shuō)明作法及理由),并求四面體PDEF的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)列滿足對(duì)任意的恒成立,為其前n項(xiàng)的和,且,.
(1)求數(shù)列的通項(xiàng);
(2)數(shù)列滿足,其中.
①證明:數(shù)列為等比數(shù)列;
②求集合
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com