7.已知$f(α)=\frac{{cos(\frac{π}{2}+α)sin(\frac{3π}{2}-α)}}{cos(-π-α)tan(π-α)}$,則$f(-\frac{25π}{3})$的值為$\frac{1}{2}$.

分析 利用誘導(dǎo)公式化簡(jiǎn)函數(shù)的表達(dá)式,然后求解函數(shù)值即可.

解答 解:$f(α)=\frac{{cos(\frac{π}{2}+α)sin(\frac{3π}{2}-α)}}{cos(-π-α)tan(π-α)}$=$\frac{sinαcosα}{cosαtanα}$=cosα.
則$f(-\frac{25π}{3})$=cos$(-\frac{25π}{3})$=cos$\frac{π}{3}$=$\frac{1}{2}$,
故答案為:$\frac{1}{2}$.

點(diǎn)評(píng) 本題考查誘導(dǎo)公式應(yīng)用,三角函數(shù)化簡(jiǎn)求值,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在等比數(shù)列{an}中,$\underset{lim}{n→∞}$(a1+a2+…+an)=$\frac{1}{15}$,則a1的取值范圍是$(0,\frac{2}{15})$,且a1$≠\frac{1}{15}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知$sinα=\frac{{\sqrt{5}}}{5},sin({α-β})=-\frac{{\sqrt{10}}}{10},α,β$均為銳角,則cos2β=( 。
A.$-\frac{{\sqrt{3}}}{2}$B.-1C.0D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.計(jì)算4log6$\sqrt{3}$+log64的結(jié)果是( 。
A.log62B.2C.log63D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.(x2-$\frac{1}{2x}$)6的展開式中,常數(shù)項(xiàng)是( 。
A.$\frac{15}{16}$B.$\frac{5}{4}$C.-$\frac{15}{16}$D.-$\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如圖所示,為了測(cè)量某湖泊兩側(cè)A,B間的距離,李寧同學(xué)首先選定了與A,B不共線的一點(diǎn)C,然后給出了三種測(cè)量方案:(△ABC的角A,B,C所對(duì)的邊分別記為a,b,c):
①測(cè)量A,C,b
②測(cè)量a,b,C
③測(cè)量A,B,a
則一定能確定A,B間距離的所有方案的個(gè)數(shù)為(  )
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若命題“?x∈R,2x2+m>4x”是真命題,則m的值可以是.
A.$\frac{3}{2}$B.-1C.1D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知向量$\vec a,\vec b,\vec c$,滿足$|{\vec a}|=\sqrt{2}$,$|{\bar b}$$|=\vec a•\vec b=3$,若$(\vec c-2\vec a)•(2\vec b-3\vec c)$=0,則$|{\vec b-\vec c}$|的最大值是$\sqrt{2}$+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某校對(duì)高一1班同學(xué)按照“國(guó)家學(xué)生體質(zhì)健康數(shù)據(jù)測(cè)試”項(xiàng)目按百分制進(jìn)行了測(cè)試,并對(duì)50分以上的成績(jī)進(jìn)行統(tǒng)計(jì),其頻率分布直方圖如圖所示,若90~100分?jǐn)?shù)段的人數(shù)為2人.
(1)請(qǐng)求出70-80分?jǐn)?shù)段的人數(shù);
(2)現(xiàn)根據(jù)測(cè)試成績(jī)從第一組和第五組(從低分段到高分段依次為第一組、第二組、…、第五組)中任意選出兩人為一組,若選出的兩人成績(jī)差大于20,則稱該組為“搭檔組”,試求選出的兩人為“搭檔組”的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案