分析 由$cos<\overrightarrow{a},\overrightarrow>$=$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow{a}|•|\overrightarrow|}$=$\frac{2}{3}$,能求出z,由此能求出|$\overrightarrow{a}-2\overrightarrow$|.
解答 解:∵向量$\overrightarrow a=({1,0,z})$與向量$\overrightarrow b=({2,1,2})$的夾角的余弦值為$\frac{2}{3}$,
∴$cos<\overrightarrow{a},\overrightarrow>$=$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow{a}|•|\overrightarrow|}$=$\frac{2+2z}{\sqrt{1+{z}^{2}}•\sqrt{9}}$=$\frac{2+2z}{3\sqrt{1+{z}^{2}}}$=$\frac{2}{3}$,
解得z=0,
∴$\overrightarrow{a}-2\overrightarrow$=(1,0,0)-(4,2,4)=(-3,-2,-4),
|$\overrightarrow{a}-2\overrightarrow$|=$\sqrt{9+4+16}$=$\sqrt{29}$.
故答案為:0,$\sqrt{29}$.
點(diǎn)評 本題考查實(shí)數(shù)值的求法,考查向量的模的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意向量夾角余弦值的坐標(biāo)運(yùn)算公式的合理運(yùn)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=lnx | B. | y=x3 | C. | y=3x | D. | y=sinx |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com