4.已知集合U={1,2,3,4,5,6,7},A={x∈R|數(shù)軸上x到3的距離等于1,或x到6的距離等于1},B={x∈Z|$\frac{2x-11}{2-x}≥0$},求(∁UA)∪(∁UB).

分析 先求出集合A,B,再求出各自的補(bǔ)集,并起來可得答案.

解答 解:∵A={x∈R|x到3的距離等于1,或x到6的距離等于1}={2,4,5,7},
B={x∈Z|$\frac{2x-11}{2-x}≥0$}={3,4,5},
集合U={1,2,3,4,5,6,7},
∴∁UA={1,3,6},∁UB={1,2,6,7},
(∁UA)∪(∁UB)={1,2,3,6,7}.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是集合的交集,并集,補(bǔ)集運(yùn)算,難度不大,屬于基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知集合A={x|x2-2≥0},B={x|x2-4x+3≤0}則A∪B=( 。
A.RB.{x|x≤-$\sqrt{2}$或x≥1}C.{x|x≤1或a≥2}D.{x|x≤2或x≥3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在平面直角坐標(biāo)系xOy,已知平面區(qū)域A={(x,y)|x+y≤2,x≥0,y≥0},則平面區(qū)域B={(x+y,x-y)|(x,y)∈A}的面積為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知向量$\overrightarrow{a}$=(2cosx,$\sqrt{3}$sinx),$\overrightarrow$=(cosx,2cosx),函數(shù)f(x)=$\overrightarrow{a}•\overrightarrow+m(m∈R)$,且當(dāng)x∈[0,$\frac{π}{2}$]時(shí),f(x)的最小值為2.
(Ⅰ)求f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)先將函數(shù)y=f(x)的圖象上的點(diǎn)縱坐標(biāo)不變,橫坐標(biāo)縮小到原來的$\frac{1}{2}$,再把所得的圖象向右平移$\frac{π}{12}$個(gè)單位,得到函數(shù)y=g(x)的圖象,求方程g(x)=4在區(qū)間[0,$\frac{π}{2}$]上所有根之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知x2-4x-a≤0在x∈[0,1]上恒成立,則實(shí)數(shù)a的取值范圍是[0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,四邊形ABCD是平行四邊形,點(diǎn)E在邊BA的延長線上,CE交AD于點(diǎn)F,∠ECA=∠D,求證:AC•BE=CE•AD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.?dāng)?shù)列{an}中,前n項(xiàng)和為Sn,a1≠a2,Sn=pnan
  (1)求p的值;
  (2)確定數(shù)列{an}是否為等差數(shù)列或等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.對(duì)于矩形ABCD,若AB=3,BC=4,以邊AB為軸旋轉(zhuǎn)形成圓柱,那么繞圓柱一周的繩子由C點(diǎn)到D點(diǎn)最短多長?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)集合A={m-2,-3},B={-1,m-3},若A∩B={-3},則m的值為0.

查看答案和解析>>

同步練習(xí)冊(cè)答案