若函數(shù)f(x)=x3-
3
2
x2+1,則( 。
A、最大值為1,最小值為
1
2
B、最大值為1,無(wú)最小值
C、最小值為
1
2
,無(wú)最大值
D、既無(wú)最大值也無(wú)最小值
考點(diǎn):函數(shù)的最值及其幾何意義
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:求函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)研究函數(shù)的極值和最值,即可得到結(jié)論.
解答: 解:∵f(x)=x3-
3
2
x2+1,
∴f′(x)=3x2-3x=3x(x-1),
則由f′(x)=3x(x-1)>0,解得x>1或x<0,此時(shí)函數(shù)單調(diào)遞增,
由f′(x)=3x(x-1)<0,解得0<x<1,此時(shí)函數(shù)單調(diào)遞減,
即函數(shù)在x=0處取得極大值,在x=1處取得極小值,無(wú)最大值和最小值.
故選:D.
點(diǎn)評(píng):本題主要考查函數(shù)最值的判斷,利用導(dǎo)數(shù)是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)b>a>0,則2b+
2
ab-a2
的最小值為。ā 。
A、2B、3C、6D、無(wú)最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,雙曲線的中心在坐標(biāo)原點(diǎn)O,A,C分別是雙曲線虛軸的上、下頂點(diǎn),B是雙曲線的左頂點(diǎn),F(xiàn)為雙曲線的左焦點(diǎn),直線AB與FC相交于點(diǎn)D.若雙曲線的離心率為3,則∠BDF的余弦值是( 。
A、
17
51
B、
2
7
51
C、
3
17
51
D、
5
17
51

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a>3,則z=
1
a-3
+a的最小值是( 。
A、
5
2
B、3
C、4
D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的焦距為2
5
,若拋物線x2=16y的焦點(diǎn)到雙曲線C的漸近線的距離為
8
5
5
,則雙曲線C的方程為(  )
A、
x2
8
-
y2
2
=1
B、
x2
2
-
y2
8
=1
C、
x2
4
-y2=1
D、x2-
y2
4
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,漸進(jìn)線為l1,l2,以F1F2為直徑的圓在第一象限與l1交于點(diǎn)P,在第二象限與l2交于點(diǎn)Q,且
OF1
+
OP
=λ
OQ
(λ>0),則雙曲線的離心率是( 。
A、
2
3
3
B、2
C、
3
D、
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若a>0,b>0,則p=
b2
a
+
a2
b
與q=a+b的大小關(guān)系為( 。
A、p>qB、p≥q
C、p<qD、p≤q

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

拋物線x=
1
m
y2的準(zhǔn)線過(guò)雙曲線
x2
12
-
y2
4
=1的右焦點(diǎn),則m的值是( 。
A、-8B、-16C、4D、16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若數(shù)列{an}是等比數(shù)列,其前n項(xiàng)和Sn=3n-t(n∈N*).?dāng)?shù)列{bn}是等差數(shù)列,首項(xiàng)b1=5-2t,公差d=-2,其中t∈R.
(1)求實(shí)數(shù)t的值;
(2)求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案