設(shè)函數(shù)f(x)= (a<0)的定義域?yàn)镈,若所有點(diǎn)(s,f(t))(s、t∈D)構(gòu)成一個(gè)正方形區(qū)域,則a的值為_(kāi)_______.
-4
|x1-x2|=fmax(x),,|a|=2,∴a=-4
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

學(xué)校操場(chǎng)邊有一條小溝,溝沿是兩條長(zhǎng)150米的平行線段,溝寬為2米,,與溝沿垂直的平面與溝的交線是一段拋物線,拋物線的頂點(diǎn)為,對(duì)稱軸與地面垂直,溝深2米,溝中水深1米.
(1)求水面寬;
(2)如圖1所示形狀的幾何體稱為柱體,已知柱體的體積為底面積乘以高,求溝中的水有多少立方米?


(3)現(xiàn)在學(xué)校要把這條水溝改挖(不準(zhǔn)填土)成截面為等腰梯形的溝,使溝的底面與地面平行,溝深不變,兩腰分別與拋物線相切(如圖2),問(wèn)改挖后的溝底寬為多少米時(shí),所挖的土最少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

的圖像是中心對(duì)稱圖形,則_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

甲廠以x千克/小時(shí)的速度運(yùn)輸生產(chǎn)某種產(chǎn)品(生產(chǎn)條件要求1≤x≤10),每小時(shí)可獲得利潤(rùn)是100(5x+1-)元.
(1)要使生產(chǎn)該產(chǎn)品2小時(shí)獲得的利潤(rùn)不低于3000元,求x的取值范圍;
(2)要使生產(chǎn)900千克該產(chǎn)品獲得的利潤(rùn)最大,問(wèn):甲廠應(yīng)該選取何種生產(chǎn)速度?并求最大利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

下列圖象表示函數(shù)關(guān)系y=f(x)的有________.(填序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某單位決定對(duì)本單位職工實(shí)行年醫(yī)療費(fèi)用報(bào)銷制度,擬制定年醫(yī)療總費(fèi)用在2萬(wàn)元至10萬(wàn)元(包括2萬(wàn)元和10萬(wàn)元)的報(bào)銷方案,該方案要求同時(shí)具備下列三個(gè)條件:①報(bào)銷的醫(yī)療費(fèi)用y(萬(wàn)元)隨醫(yī)療總費(fèi)用x(萬(wàn)元)增加而增加;②報(bào)銷的醫(yī)療費(fèi)用不得低于醫(yī)療總費(fèi)用的50%;③報(bào)銷的醫(yī)療費(fèi)用不得超過(guò)8萬(wàn)元.
(1)請(qǐng)你分析該單位能否采用函數(shù)模型y=0.05(x2+4x+8)作為報(bào)銷方案;
(2)若該單位決定采用函數(shù)模型y=x-2lnx+a(a為常數(shù))作為報(bào)銷方案,請(qǐng)你確定整數(shù)a的值.(參考數(shù)據(jù):ln2≈0.69,ln10≈2.3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

某商品在近30天內(nèi)每件的銷售價(jià)格P(元)與時(shí)間t(天)的函數(shù)關(guān)系為P=且該商品的日銷售量Q與時(shí)間t(天)的函數(shù)關(guān)系為Q=-t+40(0<t≤30,t∈N),則這種商品日銷量金額最大的一天是30天中的第________天.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若函數(shù)f(x)=ax2-3x+4在區(qū)間(-∞,6)上單調(diào)遞減,則實(shí)數(shù)a的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)函數(shù)f(x)=若f(a)+f(-1)=2,則a=(  )
A.-3B.±3
C.-1D.±1

查看答案和解析>>

同步練習(xí)冊(cè)答案