設(shè)f(x)=msin(πx+α1)+ncos(πx+α2),其中m、n、α1、α2都是非零實(shí)數(shù),若f(2004)=1,則f(2005)=
 
考點(diǎn):函數(shù)奇偶性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)解析式得出:msin(2004π+α1)+ncos(2004π+α2)=1,msin(α1)+ncos(α2)=1,
整體求解即可f(2005)=msin(2005π+α1)+ncos(2005π+α2)=-msin(2004π+α1)-ncos(2004π+α2).
解答: 解:∵f(x)=msin(πx+α1)+ncos(πx+α2),其中m、n、α1、α2都是非零實(shí)數(shù),
∴若f(2004)=1,即得出msin(2004π+α1)+ncos(2004π+α2)=1,
msin(α1)+ncos(α2)=1,
f(2005)=msin(2005π+α1)+ncos(2005π+α2)=-msin(2004π+α1)-ncos(2004π+α2)=-1,
故答案為:-1
點(diǎn)評(píng):本題考查了函數(shù)的性質(zhì),整體運(yùn)用的思想,難度不大,運(yùn)用公式求解即可,屬于中檔題,熟練運(yùn)用公式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若關(guān)于x的方程lg(x2+ax)=1在x∈[1,5]上有解,則實(shí)數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=3sin2x+acos2x,其中a為常數(shù).f(x)的圖象關(guān)于直線x=
π
6
對(duì)稱,則f(x)在以下區(qū)間上是單調(diào)函數(shù)的是( 。
A、[-
3
5
π,-
1
6
π]
B、[-
7
12
π,-
1
3
π]
C、[-
1
6
π,
1
3
π]
D、[0,
1
2
π]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=sin(ωx+φ)+
3
cos(ωx+φ)(ω>0,|φ|<
π
2
)的最小正周期為π,且滿足f(-x)=f(x),則函數(shù)f(x)的單調(diào)增區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)口袋中有黑球、白球共7 個(gè),從中任取2個(gè)球,已知取到至少1個(gè)白球的概率為
5
7
,則口袋中白球的個(gè)數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用定積分的定義計(jì)算:
3
0
(2-x)2
dx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(x-2+
1
x
4展開式中的常數(shù)項(xiàng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l1:ax+y=1和直線l2:4x+ay=2,則“a+2=0”是“l(fā)1∥l2”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}是各項(xiàng)均不為0的等差數(shù)列,其前n項(xiàng)和為Sn,且an2=S2n-1,數(shù)列{bn}滿足b1=-
1
2
,2bn+1=bn-1.
(Ⅰ)求an,并證明數(shù)列{bn+1}是等比數(shù)列;
(Ⅱ)若cn=an(bn+1),求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案