10.我國南宋著名數(shù)學(xué)家秦九韶發(fā)現(xiàn)了從三角形三邊求三角形面積的“三斜公式”,設(shè)△ABC三個內(nèi)角A、B、C所對的邊分別為a、b、c,面積為S,則“三斜求積”公式為$S=\sqrt{\frac{1}{4}[{{a^2}{c^2}-{{({\frac{{{a^2}+{c^2}-{b^2}}}{2}})}^2}}]}$.若a2sinC=4sinA,(a+c)2=12+b2,則用“三斜求積”公式求得△ABC的面積為$\sqrt{3}$.

分析 由已知利用正弦定理可求ac的值,可求a2+c2-b2=4,代入“三斜求積”公式即可計算得解.

解答 解:根據(jù)正弦定理:由a2sinC=4sinA,可得:ac=4,
由于(a+c)2=12+b2,可得:a2+c2-b2=4,
可得:$S=\sqrt{\frac{1}{4}[{{a^2}{c^2}-{{({\frac{{{a^2}+{c^2}-{b^2}}}{2}})}^2}}]}$=$\sqrt{\frac{1}{4}×(16-4)}$=$\sqrt{3}$.
故答案為:$\sqrt{3}$.

點評 本題主要考查了正弦定理在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知向量$\overrightarrow a$與$\overrightarrow b$的夾角為60,$|{\overrightarrow a}|=4,|{\overrightarrow b}|=1,則\overrightarrow b⊥(\overrightarrow a-x•\overrightarrow b)$時,實數(shù)x為(  )
A.4B.2C.lD.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如圖中的程序框圖的算法思路來源于我國古代數(shù)學(xué)名著《九章算術(shù)》中的”更相減損術(shù)“.執(zhí)行該程序框圖,若輸入a,b,i的值分別為6,8,0時,則輸出的i=( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在△ABC中,角A,B,C的對邊分別是a,b,c,$a=2\sqrt{2}$,${sinC}=\sqrt{2}sinA$.
(Ⅰ)求邊c的值;
(Ⅱ) 若$cosC=\frac{{\sqrt{2}}}{4}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)=cos(ωx-$\frac{ωπ}{6}$)(ω>0)的最小正周期為π,則函數(shù)f(x)的圖象( 。
A.可由函數(shù)g(x)=cos2x的圖象向左平移$\frac{π}{3}$個單位而得
B.可由函數(shù)g(x)=cos2x的圖象向右平移$\frac{π}{3}$個單位而得
C.可由函數(shù)g(x)=cos2x的圖象向左平移$\frac{π}{6}$個單位而得
D.可由函數(shù)g(x)=cos2x的圖象向右平移$\frac{π}{6}$個單位而得

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.關(guān)于曲線$C:\frac{1}{x^2}+\frac{1}{y^2}=1$,有如下結(jié)論:
①曲線C關(guān)于原點對稱;
②曲線C關(guān)于直線x±y=0對稱;
③曲線C是封閉圖形,且封閉圖形的面積大于2π;
④曲線C不是封閉圖形,且它與圓x2+y2=2無公共點;
⑤曲線C與曲線$D:|x|+|y|=2\sqrt{2}$有4個交點,這4點構(gòu)成正方形.其中所有正確結(jié)論的序號為①②④⑤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知橢圓$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{4}$=1,直線mx+y+m-1=0,那么直線與橢圓位置關(guān)系( 。
A.相交B.相離C.相切D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知集合A={(x,y)|3x-y=7},集合B={(x,y)|2x+y=3},則A∩B={(2,-1)}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知直線l:y=-x+3與橢圓C:mx2+ny2=1(n>m>0)有且只有一個公共點P(2,1).
(I)求橢圓C的標(biāo)準(zhǔn)方程;
(II)若直線l′:y=-x+b交C于A,B兩點,且PA⊥PB,求b的值.

查看答案和解析>>

同步練習(xí)冊答案