3.cos54°+cos66°-cos6°=( 。
A.0B.$\frac{1}{3}$C.$\frac{1}{2}$D.1

分析 利用和差化積公式,誘導(dǎo)公式化簡已知即可計(jì)算求值.

解答 解:cos54°+cos66°-cos6°
=2cos$\frac{54°+66°}{2}$cos$\frac{54°-66°}{2}$-cos6°
=2cos60°cos(-6°)-cos6°
=cos6°-cos6°
=0.
故選:A.

點(diǎn)評 本題主要考查了和差化積公式,誘導(dǎo)公式,特殊角的三角函數(shù)值在三角函數(shù)化簡求值中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.復(fù)數(shù)$\frac{3-i}{i}$=(  )
A.1+3iB.-1-3iC.-1+3iD.1-3i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在等比數(shù)列{an}中,${a_1}+{a_2}=\frac{1}{2},{a_5}+{a_6}=8,{a_n}>0$,則a3+a4=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知$\overrightarrow{a}$,$\overrightarrow$是不共線的兩個(gè)向量,且$\overrightarrow{a}$$•\overrightarrow$>0,|$\overrightarrow$|≥4,若對任意m,n∈R,|$\overrightarrow{a}$+m$\overrightarrow$|的最小值是1,|$\overrightarrow$+n$\overrightarrow{a}$|的最小值是2,則$\overrightarrow{a}$$•\overrightarrow$的最小值是4$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.植物園擬建一個(gè)多邊形苗圃,苗圃的一邊緊靠著長度大于30m的圍墻.現(xiàn)有兩種方案:
方案①多邊形為直角三角形AEB(∠AEB=90°),如圖1所示,其中AE+EB=30m;
方案②多邊形為等腰梯形AEFB(AB>EF),如圖2所示,其中AE=EF=BF=10m.
請你分別求出兩種方案中苗圃的最大面積,并從中確定使苗圃面積最大的方案.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.廣場舞是現(xiàn)代城市群眾文化、娛樂發(fā)展的產(chǎn)物,其兼具文化性和社會(huì)性,是精神文明建設(shè)成果的一個(gè)重要指標(biāo)和象征.2015年某高校社會(huì)實(shí)踐小組對某小區(qū)廣場舞的開展?fàn)顩r進(jìn)行了年齡的調(diào)查,隨機(jī)抽取了40名廣場舞者進(jìn)行調(diào)查,將他們年齡分成6段:[20,30),[30,40),[40,50),[50,60),[60,70),[70,80]后得到如圖的頻率分布直方圖.問:
(1)估計(jì)在40名廣場舞者中年齡分布在[40,70)的人數(shù);
(2)求40名廣場舞者年齡的眾數(shù)和中位數(shù)的估計(jì)值;
(3)若從年齡在[20,40)中的廣場舞者中任取2名,求這兩名廣場舞者中年齡在[30,40)恰有1人的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.如圖,在長方形OABC內(nèi)任取一點(diǎn)P(x,y),則點(diǎn)P落在陰影部分內(nèi)的概率為$\frac{2e-3}{2e}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知橢圓M:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別為F1、F2,點(diǎn)A是橢圓M與圓C:x2+(y-2$\sqrt{2}$b)2=$\frac{4}{9}$m2在第一象限的交點(diǎn),且點(diǎn)A到F2的距離等于$\frac{1}{3}$m,若橢圓M上一動(dòng)點(diǎn)到點(diǎn)F1與到點(diǎn)C的距離之差的最大值為2a-m,則橢圓M的離心率為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.若兩條異面直線中的一條在平面α內(nèi),討論另一條直線與平面α的位置關(guān)系.

查看答案和解析>>

同步練習(xí)冊答案