某幾何體的三視圖如圖所示,其中俯視圖為扇形,則該幾何體的體積為( 。
A、
16π
9
B、
16π
3
C、
9
D、
3
考點(diǎn):由三視圖求面積、體積
專題:空間位置關(guān)系與距離
分析:根據(jù)三視圖判斷幾何體是圓錐的一部分,再根據(jù)俯視圖與左視圖的數(shù)據(jù)可求得底面扇形的圓心角為120°,又由側(cè)視圖知幾何體的高為4,底面圓的半徑為2,把數(shù)據(jù)代入圓錐的體積公式計算.
解答: 解:由三視圖知幾何體是圓錐的一部分,

由正視圖可得:底面扇形的圓心角為120°,
又由側(cè)視圖知幾何體的高為4,底面圓的半徑為2,
∴幾何體的體積V=
120
360
×
1
3
×π×22×4=
16
9
π.
故選:A
點(diǎn)評:本題考查了由三視圖求幾何體的體積,根據(jù)三視圖判斷幾何體的結(jié)構(gòu)特征及求相關(guān)幾何量的數(shù)據(jù)是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

圓O1的方程為x2+(y+1)2=4,圓O2的圓心O2(2,1).
(1)若圓O2與圓O1外切,求圓O2的方程;
(2)若圓O2與圓O1交于A、B兩點(diǎn),且|AB|=2
2
.求圓O2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

四棱錐P-ABCD中,底面ABCD是邊長為8的菱形,∠BAD=
π
3
,若PA=PD=5,平面PAD⊥平面ABCD,E、F分別為BC、PA的中點(diǎn).
(1)求證:EF∥面PCD;
(2)求證:AD⊥PB;
(3)求三棱錐C-BDP的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線的一條過焦點(diǎn)F的弦PQ,點(diǎn)R在直線PQ上,且滿足
OR
=
1
2
(
OP
+
OQ
)
,R在拋物線準(zhǔn)線上的射影為S,設(shè)α,β是△PQS中的兩個銳角,則下列四個式子
①tanαtanβ=1;②sinα+sinβ≤
2
;③cosα+cosβ>1;④|tan(α-β)|>tan
α+β
2

中一定正確的有(  )
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2-alnx-x,g(x)=2x-2x
x
+kex
,(e=2.71828…是自然對數(shù)的底數(shù)).
(1)討論f(x)在其定義域上的單調(diào)性;
(2)若a=2,且不等式xf(x)≥g(x)對于?x∈(0,+∞)恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

移動公司在國慶期間推出4G套餐,對國慶節(jié)當(dāng)日辦理套餐的客戶進(jìn)行優(yōu)惠,優(yōu)惠方案如下:選擇套餐一的客戶可獲得優(yōu)惠200元,選擇套餐二的客戶可獲得優(yōu)惠500元,選擇套餐三的客戶可獲得優(yōu)惠300元.國慶節(jié)當(dāng)天參與活動的人數(shù)統(tǒng)計結(jié)果如圖所示,現(xiàn)將頻率視為概率.
(1)求某人獲得優(yōu)惠金額不低于300元的概率;
(2)若采用分層抽樣的方式從參加活動的客戶中選出6人,再從該6人中隨機(jī)選出兩人,求這兩人獲得相等優(yōu)惠金額的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系中,O為原點(diǎn).點(diǎn)A在x軸的正半軸上,點(diǎn)B在y軸的正半軸上,tan∠OAB=2.二次函數(shù)y=x2+mx+2的圖象經(jīng)過點(diǎn)A,B,頂點(diǎn)為D.
(1)求這個二次函數(shù)的解析式;
(2)將△OAB繞點(diǎn)A順時針旋轉(zhuǎn)90°后,點(diǎn)B落到點(diǎn)C的位置.將上述二次函數(shù)圖象沿y軸向上或向下平移后經(jīng)過點(diǎn)C.請直接寫出點(diǎn)C的坐標(biāo)和平移后所得圖象的函數(shù)解析式;
(3)設(shè)(2)中平移后所得二次函數(shù)圖象與y軸的交點(diǎn)為B1,頂點(diǎn)為D1.點(diǎn)P在平移后的二次函數(shù)圖象上,且滿足△PBB1的面積是△PDD1面積的2倍,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知θ∈(0,
π
2
),則
2
sinθ
+
3
1-sinθ
的最小值為( 。
A、5+2
6
B、10
C、6+2
5
D、6+5
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

長為4的向量
a
與單位向量
e
的夾角為
3
,則向量
a
在向量
e
方向上的射影向量為
 
,
a
e
方向上的正投影的數(shù)量為
 

查看答案和解析>>

同步練習(xí)冊答案