考點:數(shù)列的求和,等差數(shù)列的通項公式,等比數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:(Ⅰ)由已知得數(shù)列{a
n}是首項為
,公比為
的等比數(shù)列,由此能求出
an=()n,n∈N
*.
(Ⅱ)由b
n+2=3
loga
n(n∈N
*)=3log
(
)
n=6n,得b
n=6n-2,由此能證明數(shù)列{b
n}是首項為4,公差為6的等差數(shù)列.
(Ⅲ)由c
n=a
n•b
n=(
)
n•(6n-2),利用錯位相減法能求出數(shù)列{c
n}的前n項和S
n.
解答:
(Ⅰ)解:∵a
1=
,
=,
∴數(shù)列{a
n}是首項為
,公比為
的等比數(shù)列,
∴
an=()n,n∈N
*.
(Ⅱ)證明:∵b
n+2=3
loga
n(n∈N
*)=3log
(
)
n=6n,
∴b
n=6n-2,
∴b
1=4,n≥2時,b
n-b
n-1=6,
∴數(shù)列{b
n}是首項為4,公差為6的等差數(shù)列.
(Ⅲ)解:c
n=a
n•b
n=(
)
n•(6n-2),
∴
Sn=4×+10×()2+16×()3+…+
(6n-2)×()n,①
Sn=
4×()2+10×()3+16×()4+…+(6n-2)×
()n+1,②
①-②,得:
Sn=1+6[(
)
2+(
)
3+…+
()n]-(6n-2)×
()n+1=1+6×
-(6n-2)×
()n+1=3-
-(6n-2)×
()n+1,
∴S
n=4-
•-
•.
點評:本題考查數(shù)列{an}的通項公式的求法,考查數(shù)列{bn}是等差數(shù)列的證明,考查數(shù)列{cn}的前n項和的求法,解題時要注意錯位相減法的合理運用.