A. | π | B. | $\frac{2}{3}$π | C. | $\frac{5}{6}$π | D. | $\frac{3}{4}$π |
分析 利用任意角的三角函數(shù)的定義、同角三角函數(shù)的基本關(guān)系,求得tanα=2,tanβ=$\frac{1}{7}$,再利用兩角和的正切公式
求得 tan(2α+β)的值,結(jié)合2α+β的范圍,求得2α+β的值.
解答 解:由題意可得,A的縱坐標(biāo)為$\frac{2\sqrt{5}}{5}$,B的橫坐標(biāo)為$\frac{7\sqrt{2}}{10}$,
即A($\frac{\sqrt{5}}{5}$,$\frac{2\sqrt{5}}{5}$)、B($\frac{7\sqrt{2}}{10}$,$\frac{\sqrt{2}}{10}$),∴tanα=2,tanβ=$\frac{1}{7}$,
可得α∈($\frac{π}{4}$,$\frac{π}{2}$),β∈(0,$\frac{π}{6}$),∴2α+β∈($\frac{π}{2}$,$\frac{7π}{6}$).
∵tan2α=$\frac{2tanα}{1{-tan}^{2}α}$=-$\frac{4}{3}$,∴tan(2α+β)=$\frac{tan2α+tanβ}{1-tan2α•tanβ}$=-1,
∴2α+β=$\frac{3π}{4}$,
故選:D.
點(diǎn)評(píng) 本題主要考查任意角的三角函數(shù)的定義,同角三角函數(shù)的基本關(guān)系,二倍角共公式,兩角和的正切公式的應(yīng)用,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{1}{4}$ | B. | 5 | C. | $\frac{4}{5}$ | D. | $\frac{5}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{3}$ | B. | π | C. | $\frac{4π}{3}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 鈍角三角形 | B. | 銳角三角形 | C. | 直角三角形 | D. | 不能確定 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com