3.函數(shù)y=sinx+cosx的周期是2π.

分析 利用輔助角公式化簡(jiǎn)得y=$\sqrt{2}$sin(x+$\frac{π}{4}$),代入三角函數(shù)的周期公式即可求出.

解答 解:y=sinx+cosx=$\sqrt{2}$sin(x+$\frac{π}{4}$),∴函數(shù)的周期T=2π.
故答案為:2π.

點(diǎn)評(píng) 本題考查了三角函數(shù)的恒等變換及周期,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.在銳角△ABC中,內(nèi)角A、B、C的對(duì)邊分別是a、b、c,且2cos2$\frac{B+C}{2}$+sin2A=1.
(Ⅰ)求A;
(Ⅱ)設(shè)a=2$\sqrt{3}-2$,△ABC的面積為2,求b+c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.若依次成等差數(shù)列的三個(gè)實(shí)數(shù)a,b,c的和是12,而a,b,c+2成等比數(shù)列,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=loga$\frac{x+m}{x-2}$(a>0且a≠1)的定義域?yàn)閧x|x>2或x<-2}.
(1)求實(shí)數(shù)m的值;
(2)設(shè)函數(shù)g(x)=f($\frac{2}{x}$),對(duì)函數(shù)g(x)定義域內(nèi)任意的x1,x2,若x1+x2≠0,求證:g(x1)+g(x2)=g($\frac{{x}_{1}+{x}_{2}}{1+{x}_{1}{x}_{2}}$);
(3)若函數(shù)f(x)在區(qū)間(a-4,r)上的值域?yàn)椋?,+∞),求a-r的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.在數(shù)列{an}中,an=$\left\{\begin{array}{l}{\frac{1}{2n-1}(n為奇數(shù))}\\{(-\frac{1}{2})^{n-1}(n為偶數(shù))}\end{array}\right.$,試寫出這個(gè)數(shù)列的前5項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.函數(shù)f(x)=cos(ωx+φ)的部分圖象如圖所示,函數(shù)g(x)的圖象可由函數(shù)y=sin(2x+$\frac{π}{3}$)的圖象向右平移$\frac{7}{6}$π得到,則對(duì)于滿足|f(x1)-g(x2)|=2的x1、x2,|x1-x2|的最小值等于( 。
A.$\frac{π}{24}$B.$\frac{π}{12}$C.$\frac{π}{8}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.四個(gè)數(shù)成遞增等差數(shù)列,其和為8,若前三個(gè)數(shù)依次分別加上2,1,1,則此三個(gè)數(shù)成等比數(shù)列.
(1)求這四個(gè)數(shù);
(2)求以這四個(gè)數(shù)為前4項(xiàng)的等差數(shù)列前n項(xiàng)之和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知向量$\overrightarrow{a}$=(sinθ,1),$\overrightarrow$=(1,cosθ).
(1)若$\overrightarrow{a}$$⊥\overrightarrow$,求tanθ的值;
(2)求|$\overrightarrow{a}$$+\overrightarrow$|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知集合U=R,P={x|x2-4x-5≤0},Q={x|x≥1},則P∩(∁UQ)(  )
A.{x|-1≤x<5}B.{x|1<x<5}C.{x|1≤x<5}D.{x|-1≤x<1}

查看答案和解析>>

同步練習(xí)冊(cè)答案