15.已知集合U=R,P={x|x2-4x-5≤0},Q={x|x≥1},則P∩(∁UQ)( 。
A.{x|-1≤x<5}B.{x|1<x<5}C.{x|1≤x<5}D.{x|-1≤x<1}

分析 先化簡集合P,求出∁UQ,再計(jì)算P∩(∁UQ)的值.

解答 解:∵集合U=R,P={x|x2-4x-5≤0}={x|-1≤x≤5},
Q={x|x≥1},∴∁UQ={x|x<1}
∴P∩(∁UQ)={x|-1≤x<1}.
故選:D.

點(diǎn)評 本題考查了集合的化簡與運(yùn)算問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.函數(shù)y=sinx+cosx的周期是2π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知a,b為實(shí)數(shù),則“a>b”是“l(fā)na>lnb”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知變量x,y滿足約束條件$\left\{\begin{array}{l}{y-x≤4}\\{-2≤x≤2}\\{y≥1}\end{array}\right.$,則z=x-2y的最小值是( 。
A.0B.6C.-10D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在△ABC中,a,b,c分別為內(nèi)角A,B,C的對邊,且asinB=-bsin(A+$\frac{π}{3}$).
(1)求A;
(2)若△ABC的面積S=$\frac{\sqrt{3}}{4}$c2,求sinC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知拋物線y2=6x的焦點(diǎn)為F,準(zhǔn)線為l,點(diǎn)P為拋物線上一點(diǎn),且在第一象限,PA⊥l,垂足為A,|PF|=2,則直線AF的傾斜角為( 。
A.$\frac{4π}{5}$B.$\frac{2π}{3}$C.$\frac{3π}{4}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖①,有一塊圓心角為90°,半徑為2的扇形鋼板,計(jì)劃將此鋼板切割成頂部為等腰梯形的形狀,最終變成圖②的形狀,OM⊥CD,垂足為M.

(1)設(shè)∠MOD=θ,以θ為自變量,將五邊形OADCB的面積S表示成θ的函數(shù)關(guān)系式;
(2)設(shè)t=cosθ-sinθ,
①求t的取值范圍;
②用僅含t的式子表示五邊形OADCB的面積S,并求出S的最大值及取得最大值時θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x>0時,f(x)=x2-2x,
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)畫出函數(shù)f(x)在R上的圖象(不要求列表),并寫出函數(shù)f(x)的單調(diào)區(qū)間(不用證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知變量x,y滿足約束條件$\left\{\begin{array}{l}x-y+2≤0\\ x≥1\\ x+y-7≤0\end{array}\right.$,則2x+y的取值范圍是(  )
A.(-∞,5]∪[$\frac{19}{2}$,+∞)B.[5,8]C.[5,$\frac{19}{2}$]D.[8,$\frac{19}{2}$]

查看答案和解析>>

同步練習(xí)冊答案