8.分別寫出下列命題的逆命題、否命題、逆否命題,并判斷它們的真假.
①面積相等的兩個三角形是全等三角形.
②若q<1,則方程x2+2x+q=0有實(shí)根.
③若x2+y2=0,則實(shí)數(shù)x、y全為零.

分析 分別寫出原命題的逆命題、否命題和逆否命題,并判斷真假性.

解答 解:①面積相等的兩個三角形是全等三角形,
它的逆命題是:兩個三角形全等,則它們的面積相等;(真命題)
否命題是:面積不相等的兩個三角形不是全等三角形;(真命題)
逆否命題是:兩個三角形不全等,則面積不相等;(假命題)
②若q<1,則方程x2+2x+q=0有實(shí)根,
它的逆命題是:若方程x2+2x+q=0有實(shí)根,則q<1;(假命題)
否命題是:若q≥1,則方程x2+2x+q=0無實(shí)根;(假命題)
逆否命題是:若方程x2+2x+q=0無實(shí)根,則q≥1;(真命題)
③若x2+y2=0,則實(shí)數(shù)x、y全為零,
它的逆命題是:若x、y全為零,則x2+y2=0;(真命題)
否命題是:若x2+y2≠0,則實(shí)數(shù)x、y不全為零;(真命題)
逆否命題是:若x、y不全為零,則x2+y2≠0.(真命題)

點(diǎn)評 本題考查了原命題、逆命題、否命題和逆否命題之間的關(guān)系與應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)$f(x)=lnx-\frac{m}{2}{x^2}+x(m∈R)$.
(Ⅰ)當(dāng)m>0時,若$f(x)≤mx-\frac{1}{2}$恒成立,求的取值范圍.
(Ⅱ)當(dāng)m=-1時,若f(x1)+f(x2)=0,求證:${x_1}+{x_2}≥\sqrt{3}-1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=xlnx+1.
(1)求函數(shù)f(x)在x∈[e-2,e2]上的最大值與最小值;
(2)若x>1時,$\frac{f(x)}{x}>k恒成立$,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)f(x)=atanx-bsinx+1,且$f({\frac{π}{4}})=7$,則$f({-\frac{π}{4}})$=-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.某地規(guī)定本地最低生活保障x元不低于800元,則這種不等關(guān)系寫成不等式為x≥800.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.寫出下列命題的否定并判斷真假:
(1)所有自然數(shù)的平方是正數(shù);
(2)任何實(shí)數(shù)x都是方程5x-12=0的根;
(3)?x∈R,x2-3x+3>0;     
(4)有些質(zhì)數(shù)不是奇數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.假設(shè)關(guān)于某設(shè)備的使用年限x(年)和所支出的維修費(fèi)用y(萬元)有如表的統(tǒng)計(jì)資料:
使用年限x(年)23456
維修費(fèi)用y(萬元)2.23.85.56.57.0
若由資料可知y對x呈線性相關(guān)關(guān)系,試求:
(1)線性回歸直線方程;
(2)根據(jù)回歸直線方程,估計(jì)使用年限為12年時,維修費(fèi)用是多少?
$\sum_{i=1}^{5}$x${\;}_{i}^{2}$=90;$\sum_{i=1}^{5}$xiyi=112.3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.過點(diǎn)(1,-2)的拋物線的標(biāo)準(zhǔn)方程是y2=4x或x2=-$\frac{1}{2}$y.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知曲線C1:y=ex上一點(diǎn)A(x1,y1),曲線C2:y=1+ln(x-m)(m>0)上一點(diǎn)B(x2,y2),當(dāng)y1=y2時,對于任意x1,x2,都有|AB|≥e恒成立,則m的最小值為( 。
A.1B.$\sqrt{e}$C.e-1D.e+1

查看答案和解析>>

同步練習(xí)冊答案