分析 設∠ABC=α,∠ACB=β,求出AC,sinβ,利用余弦定理,即可求出對角線BD的最大值.
解答 解:設∠ABC=α,∠ACB=β,則AC2=4-2$\sqrt{3}$cosα,
由正弦定理可得sinβ=$\frac{sinα}{\sqrt{4-2\sqrt{3}cosα}}$,
∴BD2=3+4-2$\sqrt{3}$cosα-2×$\sqrt{3}$×$\sqrt{4-2\sqrt{3}cosα}$×cos(90°+β)=7-2$\sqrt{3}$cosα+2$\sqrt{3}$sinα=7+2$\sqrt{6}$sin(α-45°),
∴α=135°時,BD取得最大值$\sqrt{6}$+1.
故答案為:$\sqrt{6}$+1.
點評 本題考查余弦定理、正弦定理的運用,考查輔助角公式的運用,考查學生的計算能力,有難度.
科目:高中數學 來源: 題型:選擇題
A. | 3 | B. | $\frac{13}{2}$ | C. | 12 | D. | 23 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 甲模型擬合效果最好 | B. | 乙模型擬合效果最好 | ||
C. | 丙模型擬合效果最好 | D. | 擬合效果與R2的值無關 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{7}{8}$ | B. | $\frac{3}{4}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{8}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com