在直角坐標(biāo)系xOy中,設(shè)A(2,2),B(-2,-3),沿y軸把坐標(biāo)平面折成120°的二面角后,AB的長(zhǎng)是( 。
A、
35
B、6
C、3
5
D、
53
考點(diǎn):點(diǎn)、線、面間的距離計(jì)算
專題:計(jì)算題,空間位置關(guān)系與距離
分析:作AC⊥x軸,BD⊥x軸,AM平行等于CD,連接AB,MD,根據(jù)二面角的平面角的定義可知∠BDM就是二面角的平面角,則利用余弦定理、勾股定理,即可求得結(jié)論.
解答: 解:A(2,2),B(-2,-3),作AC垂直x軸,BD垂直x軸,BM平行等于CD,
連接AB,MC,則|CD|=4,|BD|=3,|AC|=2,
∵BD⊥x軸,MC⊥x軸(MC∥BD),∴∠ACM就是二面角的平面角,即∠ACM=120°
∴|AM|=
9+4-2×2×3cos120°
=
19

∵|BM|=4
∴|AB|=
19+16
=
35

故選:A.
點(diǎn)評(píng):本題主要考查了空間兩點(diǎn)的距離,以及二面角平面角的應(yīng)用,同時(shí)考查了空間想象能力,計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在實(shí)數(shù)范圍內(nèi)不等式2x<x2+1的解集為( 。
A、∅
B、R
C、{x|x≠1}
D、{x|x>1,或x<-1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖給出的是計(jì)算
1
2
+
1
4
+
1
6
+…+
1
2014
的值的一個(gè)程序框圖,則判斷框內(nèi)應(yīng)填入的條件是( 。
A、i<2014
B、i>1007
C、i<1007
D、i≤1007

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若不等式
1
n+1
+
1
n+2
+…+
1
2n
m
72
對(duì)于大于1的一切正整數(shù)n都成立,則正整數(shù)m的最大值為( 。
A、43B、42C、41D、40

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義:如果一條直線同時(shí)與n個(gè)圓相切,則稱這條直線為這n個(gè)圓的公切線.已知有2013個(gè)圓Cn:(x-an2+(y-bn2=rn2(n=1,2,3,…,2013),其中an ,bn,rn的值由如圖程序給出,則這2013個(gè)圓的公切線條數(shù)(  )
A、只有一條B、恰好有兩條
C、有超過(guò)兩條D、沒有公切線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

y=3cos(2x+
π
12
)
的最小正周期是( 。
A、π
B、
π
2
C、
π
3
D、
π
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y=
1
4
x2
,過(guò)焦點(diǎn)且垂直于對(duì)稱軸的直線與拋物線交于A、B兩點(diǎn),則坐標(biāo)原點(diǎn)與A、B兩點(diǎn)構(gòu)成的三角形的面積為( 。
A、6B、4C、1D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)是定義在R上的偶函數(shù),對(duì)任意的x∈R,都有f(x-2)=f(x+2),且當(dāng)x∈[-2,0]時(shí),f(x)=(
1
2
x-1,則在區(qū)間(-2,6]內(nèi)關(guān)于x的方程f(x)-log2(x+2)=0的零點(diǎn)的個(gè)數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:lg2+lg3+
(lg6)2+log66-2lg6

查看答案和解析>>

同步練習(xí)冊(cè)答案