7.復數(shù)$\frac{1}{1-i}$的虛部是( 。
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.$\frac{1}{2}$iD.$-\frac{1}{2}i$

分析 直接利用復數(shù)代數(shù)形式的乘除運算化簡得答案.

解答 解:∵$\frac{1}{1-i}$=$\frac{1×(1+i)}{(1-i)(1+i)}=\frac{1}{2}+\frac{i}{2}$,
∴復數(shù)$\frac{1}{1-i}$的虛部是$\frac{1}{2}$.
故選:B.

點評 本題考查復數(shù)代數(shù)形式的乘除運算,考查了復數(shù)的基本概念,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

17.求橢圓$\left\{\begin{array}{l}{x=4cosθ+1}\\{y=3sinθ}\end{array}\right.$(θ為參數(shù))的左焦點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知數(shù)列{an}的前n項和為Sn,a1=1且4Sn=n(an+an+1).
(1)求a2,a3,a4;
(2)猜想數(shù)列{an}的通項公式,并用數(shù)學歸納法加以證明;
(3)設數(shù)列{$\frac{{a}^{n}}{{2}^{n}}$}的前n項和為Tn,求證Tn<3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.設Sn是數(shù)列{an}的前n項和,且a1=-2,an+1=-$\frac{{S}_{n}^{2}}{1+{S}_{n}}$,n∈N*,則Sn=$\frac{2}{2n-3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知函數(shù)y=f(x)是定義在R上的偶函數(shù),當x≤0時,f(x)=x+2,那么不等式2f(x)-1>0的解集是(-$\frac{3}{2}$,$\frac{3}{2}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.近年來,隨著市民經(jīng)濟生活水平的不斷提升,私家車擁有量的逐漸增加,我市交通擁堵現(xiàn)象越來越嚴重,據(jù)市交管部門統(tǒng)計數(shù)據(jù)顯示:每天上午6點到10點,車輛通過我市某一路段的用時y(分鐘)與車輛進入該路段的時刻t(點)之間關系可近似地用如下函數(shù)y=$\left\{\begin{array}{l}{-\frac{1}{6}{t}^{3}+a{t}^{2}-\frac{74}{3},(6≤t<9)}\\{9lnt-t,(9≤t≤10)}\end{array}\right.$表示,已知在每天上午6點時,車輛通過此路段所用時為$\frac{34}{3}$分鐘,試求出上午6點到10點期間,通過該路段用時最多的時刻.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知:x、y、z是正實數(shù),且x+2y+3z=1,
(1)求$\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$的最小值;
(2)求證:x2+y2+z2≥$\frac{1}{14}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.某沿海地區(qū)共有100戶農(nóng)民從事種植業(yè),據(jù)調(diào)查,每戶年均收入為m萬元.為了調(diào)整產(chǎn)業(yè)結(jié)構,當?shù)卣疀Q定動員部分種植戶從事水產(chǎn)養(yǎng)殖.據(jù)估計,如果能動員x(x>0)戶農(nóng)民從事水產(chǎn)養(yǎng)殖,那么剩下從事種植的農(nóng)民每戶年均收入有望提高2x%,從事水產(chǎn)養(yǎng)殖的農(nóng)民每戶年均收入為$m(a-\frac{3x}{50})$(a>0)萬元.
(Ⅰ)在動員x戶農(nóng)民從事水產(chǎn)養(yǎng)殖后,要使從事種植的農(nóng)民的年總收入不低于動員前從事種植的年總收入,試求x的取值范圍;
(Ⅱ)在(Ⅰ)的條件下,要使這100戶農(nóng)民中從事水產(chǎn)養(yǎng)殖的農(nóng)民的年總收入始終不高于從事種植的農(nóng)民的年總收入,試求實數(shù)a的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.將3張電影票分給10人中的3人,每人1張,共有720種不同的分法.

查看答案和解析>>

同步練習冊答案