15.設(shè)Sn是數(shù)列{an}的前n項和,且a1=-2,an+1=-$\frac{{S}_{n}^{2}}{1+{S}_{n}}$,n∈N*,則Sn=$\frac{2}{2n-3}$.

分析 由an+1=-$\frac{{S}_{n}^{2}}{1+{S}_{n}}$化簡可得$\frac{1}{{S}_{n+1}}$=$\frac{1+{S}_{n}}{{S}_{n}}$=$\frac{1}{{S}_{n}}$+1,從而可得{$\frac{1}{{S}_{n}}$}是以-$\frac{1}{2}$為首項,1為公差的等差數(shù)列,從而求得.

解答 解:∵an+1=-$\frac{{S}_{n}^{2}}{1+{S}_{n}}$,
∴Sn+1-Sn=-$\frac{{S}_{n}^{2}}{1+{S}_{n}}$,
∴Sn+1=-$\frac{{S}_{n}^{2}}{1+{S}_{n}}$+Sn=$\frac{{S}_{n}}{1+{S}_{n}}$,
∴$\frac{1}{{S}_{n+1}}$=$\frac{1+{S}_{n}}{{S}_{n}}$=$\frac{1}{{S}_{n}}$+1,
又∵$\frac{1}{{S}_{1}}$=-$\frac{1}{2}$,
∴{$\frac{1}{{S}_{n}}$}是以-$\frac{1}{2}$為首項,1為公差的等差數(shù)列,
∴$\frac{1}{{S}_{n}}$=-$\frac{1}{2}$+(n-1)•1=$\frac{2n-3}{2}$,
∴Sn=$\frac{2}{2n-3}$,
故答案為:$\frac{2}{2n-3}$.

點評 本題考查了數(shù)列的性質(zhì)的判斷與應(yīng)用,同時考查了轉(zhuǎn)化思想與構(gòu)造法的應(yīng)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=$\frac{x}{x+1}$,若數(shù)列{an}(n∈N*)滿足:a1=1,an+1=f(an
(1)設(shè)bn=$\frac{1}{{a}_{n}}$,求證數(shù)列{bn}是等差數(shù)列;
(2)求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知θ是銳角,且tanθ=$\sqrt{2}-1$,數(shù)列${a_{n+1}}=2{a_n}tan2θ+sin(2θ+\frac{π}{4})-1$,數(shù)列{an}的首項a1=1,
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{nan}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.甲乙兩俱樂部舉行乒乓球團體對抗賽.雙方約定:
①比賽采取五場三勝制(先贏三場的隊伍獲得勝利.比賽結(jié)束)
②雙方各派出三名隊員.前三場每位隊員各比賽-場
已知甲俱樂部派出隊員A1、A2.A3,其中A3只參加第三場比賽.另外兩名隊員A1、A2比賽場次未定:乙俱樂部派出隊員B1、B2.B3,其中B1參加第一場與第五場比賽.B2參加第二場與第四場比賽.B3只參加第三場比賽
根據(jù)以往的比賽情況.甲俱樂部三名隊員對陣乙俱樂部三名隊員獲勝的概率如表:
 A1 A2 A3
 B1 $\frac{5}{6}$ $\frac{3}{4}$ $\frac{1}{3}$
 B2 $\frac{2}{3}$ $\frac{2}{3}$ $\frac{1}{2}$
 B3 $\frac{6}{7}$ $\frac{5}{6}$$\frac{2}{3}$
(I)若甲俱樂部計劃以3:0取勝.則應(yīng)如何安排A1、A2兩名隊員的出場順序.使得取勝的概率最大?
(Ⅱ)若A1參加第一場與第四場比賽,A2參加第二場與第五場比賽,各隊員每場比賽的結(jié)果互不影響,設(shè)本次團體對抗賽比賽的場數(shù)為隨機變量X,求X的分布列及數(shù)學(xué)期望E(X)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知i是虛數(shù)單位,且$z={(\frac{1-i}{1+i})^{2016}}$+i的共軛復(fù)數(shù)為$\overline{z}$,則z$•\overline{z}$等于( 。
A.2B.1C.0D.-l

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.設(shè)異面直線l1,l2的方向向量分別為$\overrightarrow a$=(1,1,0),$\overrightarrow b$=(1,0,-1),則異面直線l1,l2所成角的大小為$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.復(fù)數(shù)$\frac{1}{1-i}$的虛部是(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.$\frac{1}{2}$iD.$-\frac{1}{2}i$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知a,b,c∈R且bc>0,若a+$\frac{1}$+$\frac{1}{c}$=$\frac{bc}{a}$,則(a+$\frac{1}$)(a+$\frac{1}{c}$)的最小值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=|x|+$\frac{m}{x}$-1,其中m∈R;
(1)當(dāng)m=2時,判斷f(x)在區(qū)間(-∞,0)上的單調(diào)性,并用定義證明;
(2)討論函數(shù)f(x)零點的個數(shù).

查看答案和解析>>

同步練習(xí)冊答案