19.求曲線y=3x在點(diǎn)(1,3)處的切線方程.

分析 求出原函數(shù)的導(dǎo)函數(shù),得到函數(shù)在x=1時的導(dǎo)數(shù),然后代入直線方程的點(diǎn)斜式得答案.

解答 解:由y=3x,得y′=3xln3,
∴y′|x=1=3ln3,
則曲線y=3x在點(diǎn)(1,3)處的切線方程為y-3=3ln3(x-1),
即(3ln3)x-y-3ln3+3=0.

點(diǎn)評 本題考查利用導(dǎo)數(shù)研究過曲線上某點(diǎn)處的切線方程,過曲線上某點(diǎn)處的切線的斜率,就是函數(shù)在該點(diǎn)處的導(dǎo)數(shù)值,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知三棱柱ABC-A1B1C1中,AA1⊥平面ABC,△ABC為邊長為1的正三角形,且AA1=2,D為AA1上的點(diǎn),且A1D=$\frac{1}{4}$,F(xiàn)為AB的中點(diǎn).
(1)求證:B1D⊥A1C;
(2)求直線A1C1與平面A1CF所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),其離心率與雙曲線$\frac{{x}^{2}}{3}$-y2=1的離心率互為倒數(shù),而直線x+y=$\sqrt{3}$恰過橢圓C的焦點(diǎn).
(1)求橢圓C的方程;
(2)設(shè)橢圓的左右頂點(diǎn)分別為A、B,上頂點(diǎn)為C,點(diǎn)P是橢圓上不同于頂點(diǎn)的任意一點(diǎn),連接BP交直線AC于點(diǎn)M,連接CP與x軸交于點(diǎn)N,求證2kMN-kMB=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.函數(shù)f(x)=$\frac{{2}^{x}+1}{{2}^{x}-1}$是( 。
A.奇函數(shù)B.偶函數(shù)
C.非奇非偶函數(shù)D.既是奇函數(shù)又是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知$\overrightarrow{{P}_{1}P}$=$\frac{2}{3}$$\overrightarrow{P{P}_{2}}$,若$\overrightarrow{P{P}_{1}}$=λ$\overrightarrow{{P}_{1}{P}_{2}}$,則λ等于$-\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)f(x)=$\frac{1}{3}$x3-f′(1)•x2+x+5,則f′(1)=$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆重慶市高三文上適應(yīng)性考試一數(shù)學(xué)試卷(解析版) 題型:選擇題

已知函數(shù),直線是它的一條對稱軸,且是離該軸最近的一個對稱中心,則( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆重慶市高三理上適應(yīng)性考試一數(shù)學(xué)試卷(解析版) 題型:解答題

已知數(shù)列的前項(xiàng)和為,且

(1)求數(shù)列的通項(xiàng)公式;

(2)若數(shù)列滿足,且數(shù)列的前項(xiàng)和為,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆湖南石門縣一中高三9月月考數(shù)學(xué)(文)試卷(解析版) 題型:解答題

已知向量,,

(1)若,求證:;

(2)設(shè),若,求的值.

查看答案和解析>>

同步練習(xí)冊答案