已知函數(shù),則,,的大小關(guān)系是

A. B.

C. D.

A

【解析】

試題分析:∵f(-x)=f(x)∴f(x)為偶函數(shù)∴f(-0.5)=f(0.5)

∵f′(x)=2x+sinx,則函數(shù)f(x)在[0,0.6]上單調(diào)遞增,所以f(0)<f(0.5)<f(0.6),即f(0)<f(-0.5)<f(0.6)故選A

考點(diǎn):本題考查函數(shù)的奇偶性、單調(diào)性,比較函數(shù)值的大小

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年廣東省江門市高三調(diào)研測(cè)試文科數(shù)學(xué)試卷(解析版) 題型:填空題

若函數(shù)滿足條件:①,;②,;③.則(1) ;(寫出一個(gè)滿足條件的函數(shù)即可)

(2)根據(jù)(1)所填函數(shù),

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年湖南省株洲市高三教學(xué)質(zhì)量統(tǒng)一檢測(cè)一文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分)海關(guān)對(duì)同時(shí)從A,B,C三個(gè)不同地區(qū)進(jìn)口的某種商品進(jìn)行抽樣檢測(cè),從各地區(qū)進(jìn)口此種商品的數(shù)量(單位:件)如下表所示. 工作人員用分層抽樣的方法從這些商品中共抽取6件樣品進(jìn)行檢測(cè).

地區(qū)

A

B

C

數(shù)量

50

150

100

(Ⅰ)求這6件樣品中來自A,B,C各地區(qū)商品的數(shù)量;

(Ⅱ)若在這6件樣品中隨機(jī)抽取2件送往甲機(jī)構(gòu)進(jìn)行進(jìn)一步檢測(cè),求這2件商品來自相同地區(qū)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年北京市高三上學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

(本小題共14分)已知二次函數(shù)的圖象經(jīng)過坐標(biāo)原點(diǎn),其導(dǎo)函數(shù)為,數(shù)列的前項(xiàng)和為,點(diǎn)均在函數(shù)的圖象上.

(1)求數(shù)列的通項(xiàng)公式;

(2)設(shè),是數(shù)列的前項(xiàng)和,求使得對(duì)所有都成立的最小正整數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年北京市高三上學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題

中,,,則 ; .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年北京市高三上學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題

在如圖所示的空間直角坐標(biāo)系中,一個(gè)四面體的頂點(diǎn)坐標(biāo)分別是(0,0,2),(2,2,0),(1,2,1),(2,2,2),給出編號(hào)①、②、③、④的四個(gè)圖,則該四面體的正視圖和俯視圖分別為( )

A.①和② B.③和① C. ④和③ D.④和②

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年北京市高三1月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

(13分)已知函數(shù),.

(1)求函數(shù)的極大值和極小值;

(2)求函數(shù)圖象經(jīng)過點(diǎn)的切線的方程;

(3)求函數(shù)的圖象與直線所圍成的封閉圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年北京市豐臺(tái)區(qū)高三上學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題共13分)已知數(shù)列的前項(xiàng)和滿足,,

(Ⅰ)如果,求數(shù)列的通項(xiàng)公式;

(Ⅱ)如果,求證:數(shù)列為等比數(shù)列,并求;

(Ⅲ)如果數(shù)列為遞增數(shù)列,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年北京市高三上學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分14分)

已知橢圓的中心在坐標(biāo)原點(diǎn),長(zhǎng)軸長(zhǎng)為,離心率,過右焦點(diǎn)的直線交橢圓于,兩點(diǎn).

(Ⅰ)求橢圓的方程;

(Ⅱ)當(dāng)直線的斜率為1時(shí),求的面積;

(Ⅲ)若以為鄰邊的平行四邊形是矩形,求滿足該條件的直線的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案