13.已知復數(shù)z=$\frac{3+i}{1-i}$,則$\overline{z}$的模長為( 。
A.$\sqrt{5}$B.5C.4D.2$\sqrt{2}$

分析 利用復數(shù)的運算法則、共軛復數(shù)的定義、模的計算公式即可得出.

解答 解:復數(shù)z=$\frac{3+i}{1-i}$=$\frac{(3+i)(1+i)}{(1-i)(1+i)}$=$\frac{2+4i}{2}$=1+2i,
則$\overline{z}$=1-2i的模長為=$\sqrt{{1}^{2}+(-2)^{2}}$=$\sqrt{5}$.
故選:A.

點評 本題考查了復數(shù)的運算法則、共軛復數(shù)的定義、模的計算公式,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

19.設復數(shù)z=i(1+i)(i為虛數(shù)單位),則復數(shù)z的實部為-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知向量$\vec a$與$\overrightarrow b$的夾角為$\frac{2π}{3}$,$|{\overrightarrow a}|=2$,|$\overrightarrow$|=3,記$\vec m=3\vec a-2\vec b$,$\vec n=2\vec a+k\vec b$
(I) 若$\vec m⊥\vec n$,求實數(shù)k的值;
(II) 當$k=-\frac{4}{3}$時,求向量$\vec m$與$\vec n$的夾角θ.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.在四棱錐P-ABCD中,底面ABCD為矩形,側棱PA⊥底面ABCD,AB=$\sqrt{3}$,BC=PA=1,E為PD的中點,點N在面PAC內(nèi),且NE⊥平面PAC,則點N到AB的距離為$\frac{\sqrt{10-4\sqrt{3}}}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.設x,y滿足約束條件$\left\{\begin{array}{l}{y≤x}\\{x+y≤1}\\{y≥-1}\end{array}\right.$,則x2+y2的最大值為5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.直線2x-y-4=0與拋物線y2=6x交于A、B兩點,則線段AB的長度為(  )
A.$\frac{{\sqrt{265}}}{2}$B.$\frac{{\sqrt{285}}}{2}$C.$\frac{{\sqrt{305}}}{2}$D.$\frac{{\sqrt{335}}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.在正三棱錐P-ABC中,D、E分別為AB、BC的中點,有下列三個論斷:①面APC⊥面PBD;②AC∥面PDE;③AB⊥面PDC,其中正確論斷的個數(shù)為(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.下列函數(shù)中,既是偶函數(shù),又是在區(qū)間(0,+∞)上單調遞減的是( 。
A.$y=\frac{1}{x}$B.y=2|x|C.$y=ln\frac{1}{|x|}$D.y=x3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知函數(shù)f(x)的導函數(shù)f'(x),且滿足關系式f(x)=x2+4xf'(2)+lnx,則f'(2)的值等于$-\frac{3}{2}$.

查看答案和解析>>

同步練習冊答案