求證:數(shù)學(xué)公式>2數(shù)學(xué)公式

證明:(分析法)
要證:>2
只需:>2成立,
根據(jù)不等式兩邊都大于0,
即證:
只需證:13+2>13+2
即證:42>40     
∵42>40顯然成立,
>2證畢. 
分析:本題利用分析法證明.只須從結(jié)論出發(fā)進(jìn)行分析轉(zhuǎn)化,即先進(jìn)行移項(xiàng),再兩邊平方,最后進(jìn)行化簡(jiǎn)即可.
點(diǎn)評(píng):本題考查綜合法與分析法,證明的關(guān)鍵是理解分析法的原理,掌握其證明的步驟,從結(jié)論出發(fā),逐步尋求命題成立的條件.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

△ABC中,角A,B,C對(duì)邊的邊長(zhǎng)分別是a,b,c,且a(cosB+cosC)=b+c.
(1)求證:A=
π2
;
(2)若△ABC外接圓半徑為1,求△ABC周長(zhǎng)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,平面上定點(diǎn)F到定直線l的距離|FM|=2,P為該平面上的動(dòng)點(diǎn),過(guò)P作直線l的垂線,垂足為Q,且(
PF
+
PQ
)•(
PF
-
PQ
)=0

(1)試建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求動(dòng)點(diǎn)P的軌跡C的方程;
(2)過(guò)點(diǎn)F的直線交軌跡C于A、B兩點(diǎn),交直線l于點(diǎn)N,已知
NA
=λ1
AF
,
NB
=λ2
BF
,求證:λ1+λ2
為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求證:
tan(2π-α)sin(-2π-α)cos(6π-α)cos(α-π)sin(5π+α)
=tanα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•唐山一模)如圖,直三棱柱ABC-A1B1C1中,AC=BC=1,AAi=3,∠ACB=90°,D為CCi上的點(diǎn),二面角A-A1B-D的余弦值為-
3
6

(I )求證:CD=2;
(II)求點(diǎn)A到平面A1BD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)某校同學(xué)設(shè)計(jì)一個(gè)如圖所示的“蝴蝶形圖案(陰影區(qū)域)”,其中AC、BD是過(guò)拋物線Γ焦點(diǎn)F的兩條弦,且其焦點(diǎn)F(0,1),
AC
BD
=0
,點(diǎn)E為y軸上一點(diǎn),記∠EFA=α,其中α為銳角.
(1)求拋物線Γ方程;
(2)求證:|AF|=
2(cosα+1)
sin2α

查看答案和解析>>

同步練習(xí)冊(cè)答案