已知方程x2+2mx-m+12=0的兩個根都大于2,則實數(shù)m的取值范圍是( 。
A、(-
16
3
,+∞)
B、(-∞,-4]
C、(-
16
3
,-4]
D、(-∞,-1)∪(3,+∞)
考點:一元二次方程的根的分布與系數(shù)的關(guān)系
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用,不等式的解法及應(yīng)用
分析:設(shè)方程x2+2mx-m+12=0兩個實數(shù)根為s、t,由已知可得s-2>0、t-2>0,進而由一元二次方程根與系數(shù)的關(guān)系(韋達定理)可構(gòu)造關(guān)于m的不等式,解得m的取值范圍.
解答: 解:設(shè)方程x2+2mx-m+12=0兩個實數(shù)根為s、t,
∴s-2>0、t-2>0,△=(2m)2-4(12-m)≥0,
解得m≤-4或,m>3,
由根與系數(shù)關(guān)系可得:s+t=-2m,st=12-m,
∴(s-2)(t-2)=st-2(s+t)+4=,12-m-2(-2m)+4=16+3m>0,解得m>-
16
3
,
且(s-2)+(t-2)=(s+t)-4=-2m-4>0,解得m<-2,
所以實數(shù)m的取值范圍:-
16
3
<m≤-4.
故選C.
點評:本題考查的知識點是一元二次方程根與系數(shù)的關(guān)系(韋達定理),其中根據(jù)已知分析出s-2>0、t-2>0,進而結(jié)合韋達定理構(gòu)造不等式組是解答的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=
ax(x+1),x≥0
x(a-x),x<0
為奇函數(shù),則滿足f(x)<2的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex-x+a有零點,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2
x2-alnx+(a-1)x,a∈R
(1)當(dāng)a=1時,求函數(shù)f(x)圖象在點(1,f(1))處的切線方程;
(2)當(dāng)a<0時,討論函數(shù)f(x)的單調(diào)性;
(3)是否存在實數(shù)a,對任意的x1,x2∈(0,+∞)且x1≠x2
f(x2)-f(x1)
x2-x1
>a恒成立?若存在,求出a的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
4
+
y2
9
=1,一組平行直線的斜率是
3
2
,這組直線何時與橢圓相交?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=log2(4x+2x+p)無零點,則實數(shù)p的取值范圍為( 。
A、p≤1
B、p≥1
C、p≤
5
4
D、p>
5
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=1,an+1=2an+3
(1)證明{an+3}是等比數(shù)列
(2)求{an}的通項公式及前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
sinωx(A>0,ω>0)的部分圖象如圖所示.P、Q分別是圖象上的一個最高點和最低點,R為圖象與x軸的交點,且四邊形OQRP為矩形.
(Ⅰ)求f(x)的解析式;
(Ⅱ)將y=f(x)的圖象向右平移
1
2
個單位長度后,得到函數(shù)y=g(x)的圖象.已知α∈(
3
2
,
5
2
)
,g(α)=
3
3
,求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sinx(sinx+cosx)
(1)求f(
4
)的值;
(2)求函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案