1.已知兩圓${C_1}:{x^2}+{y^2}-2x+10y-24=0$,${C_2}:{x^2}+{y^2}+2x+2y-8=0$.
(1)求公共弦所在直線的方程;
(2)求公共弦的長.

分析 (1)兩圓方程相減,可得公共弦所在直線的方程;
(2)求出圓心到公共弦所在直線的距離,利用勾股定理求公共弦的長.

解答 解:(1)兩圓方程相減,可得公共弦所在直線的方程x-2y+4=0;
(2)圓${C_1}:{x^2}+{y^2}-2x+10y-24=0$的圓心坐標(biāo)為(1,-5),半徑為5$\sqrt{2}$,
圓心到公共弦所在直線的距離d=$\frac{|1+10+4|}{\sqrt{1+4}}$=3$\sqrt{5}$,
∴公共弦的長=2$\sqrt{50-45}$=2$\sqrt{15}$.

點評 本題考查圓與圓的位置關(guān)系,考查點到直線距離公式的運用,考查學(xué)生的計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,菱形ABCD的中心為O,四邊形ODEF為矩形,平面ODEF⊥平面ABCD,DE=DA=DB=2.
(I)若G為DC的中點,求證:EG∥平面BCF;
(II)若$\overrightarrow{DH}$=2$\overrightarrow{HC}$,求二面角D-EH-O的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.斜率為-3,在x軸上截距為2的直線的一般式方程是3x+y-6=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)函數(shù)f(x)=ex-a(x+1)(e是自然對數(shù)的底數(shù),e=2.71828…).
(1)若f'(0)=0,求實數(shù)a的值,并求函數(shù)f(x)的單調(diào)區(qū)間;
(2)設(shè)g(x)=f(x)+$\frac{a}{e^x}$,且A(x1,g(x1)),B(x2,g(x2))(x1<x2)是曲線y=g(x)上任意兩點,若對任意的a≤-1,恒有g(shù)(x2)-g(x1)>m(x2-x1)成立,求實數(shù)m的取值范圍;
(3)求證:1n+3n+…+(2n-1)n<$\frac{{\sqrt{e}}}{e-1}{(2n)^n}(n∈{N^*})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.己知函數(shù)$f(x)=xlnx-\frac{a}{2}{x^2}$(a∈R),
(Ⅰ) 若函數(shù)y=f(x)的圖象在點(1,f(1))處的切線方程為x+y+b=0,求實數(shù)a,b的值;
(Ⅱ) 若函數(shù)f(x)≤0恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)函數(shù)f(x)=$\frac{{a}^{2x}-(t-1)}{{a}^{x}}$ (a>0且a≠1)是定義域為R的奇函數(shù).
(Ⅰ)求t的值;
(Ⅱ)若函數(shù)f(x)的圖象過點(1,$\frac{3}{2}$),是否存在正數(shù)m(m≠1),使函數(shù)g(x)=logm[a2x+a-2x-mf(x)]在[1,log23]上的最大值為0,若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知函數(shù)$f(x)=lnx+\frac{1}{x}$,若對任意的x∈[1,+∞)及m∈[1,2],不等式f(x)≥m2-2tm+2恒成立,則實數(shù)t的取值范圍是[$\frac{5}{4}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.i為虛數(shù)單位,復(fù)數(shù)z滿足z(1+i)=i,則|z|=( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.1D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知圓${C_1}:{(x-1)^2}+{y^2}=25$,圓${C_2}:{(x+1)^2}+{y^2}=1$,動圓C3與圓C1內(nèi)切并與圓C2外切.。1)設(shè)動圓C3的圓心軌跡為曲線C,求C的方程;
(2)若過點A(0,-3)的直線l與C交于兩點D,E,求△ODE的最大面積.

查看答案和解析>>

同步練習(xí)冊答案