18.已知復(fù)數(shù)z=$\frac{5{i}^{5}}{2-{i}^{3}}$-3i,則|z|等于(  )
A.2$\sqrt{2}$B.$\sqrt{5}$C.$\sqrt{3}$D.$\sqrt{2}$

分析 化簡(jiǎn)復(fù)數(shù)z,求出|z|即可.

解答 解:∵復(fù)數(shù)z=$\frac{5{i}^{5}}{2-{i}^{3}}$-3i=$\frac{5i}{2+i}$-3i=$\frac{5i(2-i)}{(2+i)(2-i)}$-3i=1-i,
∴|z|=$\sqrt{{1}^{2}{+(-1)}^{2}}$=$\sqrt{2}$.
故選:D.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的化簡(jiǎn)與求模問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=b•ax(其中a,b為正實(shí)數(shù)且a≠1)的圖象經(jīng)過點(diǎn)A(1,27),B(-1,3)
(1)試求a、b的值;
(2)若不等式ax+bx≥m在x∈[1,+∞)時(shí)恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.函數(shù)f(x)=$\frac{x}{{x}^{2}+2}$(x∈R),若f(x+$\frac{π}{3}$)=a有實(shí)數(shù)解,則實(shí)數(shù)a的取值范圍是[-$\frac{\sqrt{2}}{4}$,$\frac{\sqrt{2}}{4}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若函數(shù)f(x)=x+$\frac{1}{x}$+2a-1為奇函數(shù),則a=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$(a>b>0)的離心率是$\frac{\sqrt{3}}{2}$,點(diǎn)E($\sqrt{3}$,$\frac{1}{2}$)在橢圓上,設(shè)點(diǎn)A1,B1分別是橢圓的右頂點(diǎn)和上頂點(diǎn),過點(diǎn)A1,B1引橢圓C的兩條弦A1E、B1F.
(Ⅰ)求橢圓C的方程;
(II)若直線A1E與B1F的斜率是互為相反數(shù).
(i)直線EF的斜率是否為定值?若是求出該定值,若不是,說明理由;
(ii)設(shè)△A1EF、△B1EF的面積分別為S1和S2,求S1+S2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知數(shù)列{an}滿足a1=1,an+1-an=2n+2n,則{an}的通項(xiàng)公式為an=2n+n2-n-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.四面體ABCD中,BD=$\sqrt{2}$,AB=AD=CB=CD=AC=1,求證:面ABD⊥面BCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.式子$\frac{m(m+1)(m+2)…(m+20)}{20!}$可表示為( 。
A.A${\;}_{m+20}^{20}$B.C${\;}_{m+20}^{20}$C.21C${\;}_{m+20}^{20}$D.21C${\;}_{m+20}^{21}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若在曲線y=a2x+x+1(a>0,且a≠1)上的點(diǎn)(0,m)處的切線與直線mx-y+1=0平行,則m+a=( 。
A.1+eB.1+$\sqrt{e}$C.2+eD.2+$\sqrt{e}$

查看答案和解析>>

同步練習(xí)冊(cè)答案