3.已知數(shù)列{an}滿足a1=1,an+1-an=2n+2n,則{an}的通項(xiàng)公式為an=2n+n2-n-1.

分析 通過(guò)an+1-an=2n+2n,當(dāng)n≥2時(shí),利用an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1,進(jìn)而利用分組求和法計(jì)算即得結(jié)論.

解答 解:∵a1=1,an+1-an=2n+2n,
∴當(dāng)n≥2時(shí),an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=[2(n-1)+2n-1]+[2(n-2)+2n-2]+…+(2+21)+1
=2[(n-1)+(n-2)+…+1]+(2n-1+2n-2+…+21+1)
=2•$\frac{(n-1)[(n-1)+1]}{2}$+$\frac{1-{2}^{n}}{1-2}$
=2n+n2-n-1,
又∵當(dāng)n=1時(shí)上式成立,
∴an=2n+n2-n-1,
故答案為:2n+n2-n-1.

點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng),考查累加法,考查分組求和法,注意解題方法的積累,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知y=f(x)是奇函數(shù),若g(x)=f(x)-1且g(1)=0,則g(-1)=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知雙曲線與橢圓$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1有相同的焦點(diǎn),它的一條漸近線方程為y=x,求雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知x∈N*,f(x)=$\left\{\begin{array}{l}{{x}^{2}-35,x≥3}\\{f(x+2),x<3}\end{array}\right.$,其值域設(shè)為D,給出下列數(shù)值:-26,-1,9,14,27,65,則其中屬于集合D的元素是-26,14,65.(寫(xiě)出所有可能的數(shù)值)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知復(fù)數(shù)z=$\frac{5{i}^{5}}{2-{i}^{3}}$-3i,則|z|等于( 。
A.2$\sqrt{2}$B.$\sqrt{5}$C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如果在四棱錐P-ABCD中,底面ABCD是∠DAB=60°且邊長(zhǎng)為a的菱形,側(cè)面PAD為正三角形,其所在平面垂直于底面ABCD,G為AD邊的中點(diǎn),求證:BG⊥PA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.從雙曲線$\frac{{x}^{2}}{a}$-y2=1的一個(gè)焦點(diǎn)F到向它的一條漸近線作垂線,垂足為A,O為原點(diǎn).若△AOF的面積為1,則雙曲線的離心率為(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{\sqrt{7}}{2}$D.$\frac{\sqrt{5}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.若tanα+cotα=4,則sin2α=( 。
A.-$\frac{1}{4}$B.$\frac{1}{4}$C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足an+1=an-an-1(n≥2),a1=1,a2=2,則S2016=(  )
A.-1B.0C.336D.2016

查看答案和解析>>

同步練習(xí)冊(cè)答案