14.如圖,有一矩形相框,放置照片區(qū)域的上、下方要各留3cm空白,左、右兩側(cè)要各留2cm的空白.
(1)若相框周長為80cm,要使其面積不小于300cm2,求相框一邊的范圍;
(2)若相框的面積為400cm2,求框內(nèi)可放照片的最大面積.

分析 (1)設(shè)相框高為xcm,寬為ycm,由題意可得x+y=40,xy≥300,解不等式即可得到所求范圍;
(2)由題意可得xy=400,則框內(nèi)照片面積S=(x-6)(y-4)=xy-6y-4x+24,即S=424-6y-4x,運用基本不等式即可得到最大值.

解答 解:(1)設(shè)相框高為xcm,寬為ycm,
由題意可得x+y=40,xy≥300,
即有x2-40x+300≤0,
解得10≤x≤30,
則相框一邊的范圍為[10,30];
(2)由題意可得xy=400,
則框內(nèi)照片面積S=(x-6)(y-4)=xy-6y-4x+24,
即S=424-6y-4x,
∵x>0,y>0,xy=400,
∴6y+4x≥2$\sqrt{24xy}$=80$\sqrt{6}$,
當(dāng)且僅當(dāng)6y=4x,即x=10$\sqrt{6}$,y=$\frac{20\sqrt{6}}{3}$時等號成立.
則S≤424-80$\sqrt{6}$.
即有照片面積最大為424-80$\sqrt{6}$cm2

點評 本題考查函數(shù)的模型與應(yīng)用,基本不等式的應(yīng)用,考查計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在梯形PBCD中,A是PB的中點,DC∥PB,DC⊥CB,且PB=2BC=2DC=4(如圖1所示),將三角形PAD沿AD翻折,使PB=2(如圖2所示),E是線段PD上的一點,且PE=2DE.
(Ⅰ)求四棱錐P-ABCD的體積;
(Ⅱ)在線段AB上是否存在一點F,使AE∥平面PCF?若存在,請指出點F的位置并證明,若不存在請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.某幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A.1B.21+$\sqrt{3}$C.3$\sqrt{3}$+12D.$\frac{3\sqrt{3}}{2}$+12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在四棱錐P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E為PD的中點,PA=2AB=4.
(1)求證:CE∥平面PAB;
(2)若F為PC的中點,求AF與平面AEC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若2x-y+1≥0,2x+y≥0,且x≤1,則z=x+3y的最小值為-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.過點(2,3)和點(6,5)的直線的斜率為( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.一個三棱錐的三視圖如圖所示,則其體積是$\frac{4}{3}$;此三棱錐的最長棱的長度為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知向量$\overrightarrow{a}$與$\overrightarrow$的夾角為120°,且|$\overrightarrow{a}$|=|$\overrightarrow$|=2,那么$\overrightarrow$•(2$\overrightarrow{a}$-$\overrightarrow$)的值為( 。
A.-8B.-6C.0D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知拋物線C的焦點M,其準線與x軸的交點為K,過點K(-1,0)的直線l與C交于A,B兩點,點A關(guān)于x軸的對稱點為D.
(Ⅰ)證明:點F在直線BD上;
(Ⅱ)設(shè)$\overrightarrow{FA}$•$\overrightarrow{FB}$=$\frac{8}{9}$,求△BDK內(nèi)切圓M的方程.

查看答案和解析>>

同步練習(xí)冊答案